Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elke Firat is active.

Publication


Featured researches published by Elke Firat.


Science | 2009

IRAP identifies an endosomal compartment required for MHC class I cross-presentation.

Loredana Saveanu; Oliver Carroll; Mirjana Weimershaus; Pierre Guermonprez; Elke Firat; Vivian Lindo; Fiona Greer; Jean Davoust; Roland Kratzer; Susanna R. Keller; Gabriele Niedermann; Peter van Endert

Let Me Present to You The presentation of exogenous antigens by major histocompatibility (MHC) class I molecules is referred to as cross-presentation. Cross-presentation by dendritic cells plays a central role in the priming of cytolytic T lymphocyte responses to natural and vaccine antigens and also in the initiation of autoimmune diseases such as type 1 diabetes. A satisfactory cell biological model of cross-presentation is not available, which would be required to decipher the link, inherent in cross-presentation, between the secretory and the endocytic pathways. Saveanu et al. (p. 213, published online 4 June) identify an aminopeptidase, insulin-regulated aminopeptidase (IRAP), which interacts directly with MHC class I molecules. IRAP plays an exclusive and important role in MHC class I cross-presentation of receptor-targeted and phagocytosed antigens. In particular, a specific endosomal compartment, which carries IRAP as a unique marker, is implicated in cross-presentation of phagocytosed antigens. Immunological dendritic cells contain an endocytic compartment involved in the cross-presentation of internalized antigens. Major histocompatibility complex (MHC) class I molecules present peptides, produced through cytosolic proteasomal degradation of cellular proteins, to cytotoxic T lymphocytes. In dendritic cells, the peptides can also be derived from internalized antigens through a process known as cross-presentation. The cellular compartments involved in cross-presentation remain poorly defined. We found a role for peptide trimming by insulin-regulated aminopeptidase (IRAP) in cross-presentation. In human dendritic cells, IRAP was localized to a Rab14+ endosomal storage compartment in which it interacted with MHC class I molecules. IRAP deficiency compromised cross-presentation in vitro and in vivo but did not affect endogenous presentation. We propose the existence of two pathways for proteasome-dependent cross-presentation in which final peptide trimming involves IRAP in endosomes and involves the related aminopeptidases in the endoplasmic reticulum.


PLOS ONE | 2012

Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote γ-irradiation-induced cell death in primary stem-like glioma cells.

Elke Firat; Astrid Weyerbrock; Simone Gaedicke; Anca-Ligia Grosu; Gabriele Niedermann

We asked whether inhibitors of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is highly active in cancer stem cells (CSCs) and upregulated in response to genotoxic treatments, promote γ-irradiationγIR)-induced cell death in highly radioresistant, patient-derived stem-like glioma cells (SLGCs). Surprisingly, in most cases the inhibitors did not promote γIR-induced cell death. In contrast, the strongly cytostatic Ly294002 and PI-103 even tended to reduce it. Since autophagy was induced we examined whether addition of the clinically applicable autophagy inhibitor chloroquine (CQ) would trigger cell death in SLGCs. Triple therapy with CQ at doses as low as 5 to 10 µM indeed caused strong apoptosis. At slightly higher doses, CQ alone strongly promoted γIR-induced apoptosis in all SLGC lines examined. The strong apoptosis in combinations with CQ was invariably associated with strong accumulation of the autophagosomal marker LC3-II, indicating inhibition of late autophagy. Thus, autophagy-promoting effects of PI3K/Akt pathway inhibitors apparently hinder cell death induction in γ-irradiated SLGCs. However, as we show here for the first time, the late autophagy inhibitor CQ strongly promotes γIR-induced cell death in highly radioresistant CSCs, and triple combinations of CQ, γIR and a PI3K/Akt pathway inhibitor permit reduction of the CQ dose required to trigger cell death.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells

Simone Gaedicke; Friederike Braun; Shruthi Prasad; Marcia Machein; Elke Firat; Michael Hettich; Ravindra Gudihal; Xuekai Zhu; Kerstin Klingner; Julia Schüler; Christel Herold-Mende; Anca-Ligia Grosu; Martin Behe; Wolfgang A. Weber; Helmut R. Mäcke; Gabriele Niedermann

Significance Cancer stem cells (CSCs) are thought to be responsible for growth and dissemination of many malignant tumors and for relapse after therapy. Therefore methods for the noninvasive imaging of CSCs could have profound consequences for diagnosis and therapy monitoring in oncology. However, clinically applicable methods for noninvasive CSC imaging are still lacking. The AC133 epitope of CD133 is one of the most intensely investigated CSC markers and is particularly important for aggressive brain tumors. Here we describe the development of clinically relevant tracers that permit high-sensitivity and high-resolution monitoring of AC133+ glioblastoma stem cells in both subcutaneous and intracerebral xenograft tumors using positron emission tomography and near-infrared fluorescence imaging, two clinically highly relevant imaging modalities. A technology that visualizes tumor stem cells with clinically relevant tracers could have a broad impact on cancer diagnosis and treatment. The AC133 epitope of CD133 currently is one of the best-characterized tumor stem cell markers for many intra- and extracranial tumor entities. Here we demonstrate the successful noninvasive detection of AC133+ tumor stem cells by PET and near-infrared fluorescence molecular tomography in subcutaneous and orthotopic glioma xenografts using antibody-based tracers. Particularly, microPET with 64Cu-NOTA-AC133 mAb yielded high-quality images with outstanding tumor-to-background contrast, clearly delineating subcutaneous tumor stem cell-derived xenografts from surrounding tissues. Intracerebral tumors as small as 2–3 mm also were clearly discernible, and the microPET images reflected the invasive growth pattern of orthotopic cancer stem cell-derived tumors with low density of AC133+ cells. These data provide a basis for further preclinical and clinical use of the developed tracers for high-sensitivity and high-resolution monitoring of AC133+ tumor stem cells.


Blood | 2015

Early-onset Evans syndrome, immunodeficiency and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

Polina Stepensky; Anne Rensing-Ehl; Ruth Gather; Shoshana Revel-Vilk; Ute Fischer; Schafiq Nabhani; Fabian Beier; Tim H. Brümmendorf; Sebastian Fuchs; Simon Zenke; Elke Firat; Vered Molho Pessach; Arndt Borkhardt; Mirzokhid Rakhmanov; Bärbel Keller; Klaus Warnatz; Hermann Eibel; Gabriele Niedermann; Orly Elpeleg; Stephan Ehl

Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.


PLOS ONE | 2010

Non-Invasive In Vivo Imaging of Tumor-Associated CD133/Prominin

Chizuko Tsurumi; Norbert Esser; Elke Firat; Simone Gaedicke; Marie Follo; Martin Behe; Ursula Elsässer-Beile; Anca-Ligia Grosu; Ralph Graeser; Gabriele Niedermann

Background Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance. Methodology/Principal Findings Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry. Conclusions/Significance Taken together, our results show that non-invasive antibody-based in vivo imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics.


Radiation Oncology | 2013

Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

Dušan Milanović; Elke Firat; Anca L. Grosu; Gabriele Niedermann

Background and purposeHeat shock Protein 90 (Hsp90) is a molecular chaperone that folds,stabilizes, and functionally regulates many cellular proteins involved inoncogenic signaling and in the regulation of radiosensitivity. It isupregulated in response to stress such a heat. Hyperthermia is a potentradiosensitizer, but induction of Hsp90 may potentially limit its efficacy.Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990increases radiosensitivity, thermosensitivity and radiothermosensitivity ofhuman tumor cell lines.Material and methodsU251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. Todetermine clonogenic survival, colony forming assays were performed. Cellviability and proliferation were assesed by Trypan blue staining. Cell cycleand apoptosis analyses were performed by flow cytometry. DAPI staining wasused to detect mitotic catastrophe.ResultsNVP- HSP990 increased the thermosensitivity, radiosensitivity andradio-thermosensitivity of both cell lines in clonogenic assays.72 hours after irradiation with 4 Gy, a significant reduction incell number associated with considerable G2/M acumulation and mitoticcatastrophe as well as cell death by apoptosis/necrosis was observed.ConclusionsTreatment with NVP- HSP990 strongly sensitized U251 and MIA PaCa-2cells to hyperthermia and ionizing radiation or combination thereof throughaugmentation of G2/M arrest, mitotic catastrophe and associatedapoptosis.


Radiation Oncology | 2011

Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

Elke Firat; Simone Gaedicke; Chizuko Tsurumi; Norbert Esser; Astrid Weyerbrock; Gabriele Niedermann

Background and PurposeStem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors.Materials and methodsPrimary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots.ResultsSLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe.ConclusionsOur results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of p53-deficient SLGCs. This may have therapeutic implications. We further show that the stem-cell culture cytokines EGF plus FGF-2 activate DNA repair and thus confound in vitro comparisons of DNA damage repair between stem-like and more differentiated tumor cells.


Cancer Research | 2009

Tripeptidyl Peptidase II Plays a Role in the Radiation Response of Selected Primary Cell Types but not Based on Nuclear Translocation and p53 Stabilization

Elke Firat; Chizuko Tsurumi; Simone Gaedicke; Jisen Huai; Gabriele Niedermann

The giant cytosolic protease tripeptidyl peptidase II (TPPII) was recently proposed to play a role in the DNA damage response. Shown were nuclear translocation of TPPII after gamma-irradiation, lack of radiation-induced p53 stabilization in TPPII-siRNA-treated cells, and complete tumor regression in mice after gamma-irradiation when combined with TPPII-siRNA silencing or a protease inhibitor reported to inhibit TPPII. This suggested that TPPII could be a novel target for tumor radiosensitization and prompted us to study radiation responses using TPPII-knockout mice. Neither the sensitivity to total body irradiation nor the radiosensitivity of resting lymphoid cells, which both strongly depend on p53, was altered in the absence of TPPII. Functional integrity of p53 in TPPII-knockout cells is further shown by a proper G(1) arrest and by the accumulation of p53 and its transcriptional targets, p21, Bax, and Fas, on gamma-irradiation. Furthermore, we could not confirm radiation-induced nuclear translocation of TPPII. Nevertheless, after gamma-irradiation, we found slightly increased mitotic catastrophe of TPPII-deficient primary fibroblasts and increased apoptosis of TPPII-deficient activated CD8(+) T cells. The latter was accompanied by delayed resolution of the DNA double-strand break marker gammaH2AX. This could, however, be due to increased apoptotic DNA damage rather than reduced DNA damage repair. Our data do not confirm a role for TPPII in the DNA damage response based on nuclear TPPII translocation and p53 stabilization but nevertheless do show increased radiation-induced cell death of selected nontransformed cell types in the absence of the TPPII protease.


Cancer Research | 2015

Effective Eradication of Glioblastoma Stem Cells by Local Application of an AC133/CD133-Specific T-cell–Engaging Antibody and CD8 T Cells

Shruthi Prasad; Simone Gaedicke; Marcia Machein; Gerhard Mittler; Friederike Braun; Michael Hettich; Elke Firat; Kerstin Klingner; Julia Schüler; Dagmar Wider; Ralph Wäsch; Christel Herold-Mende; Ursula Elsässer-Beile; Gabriele Niedermann

Cancer stem cells (CSC) drive tumorigenesis and contribute to genotoxic therapy resistance, diffuse infiltrative invasion, and immunosuppression, which are key factors for the incurability of glioblastoma multiforme (GBM). The AC133 epitope of CD133 is an important CSC marker for GBM and other tumor entities. Here, we report the development and preclinical evaluation of a recombinant AC133×CD3 bispecific antibody (bsAb) that redirects human polyclonal T cells to AC133(+) GBM stem cells (GBM-SC), inducing their strong targeted lysis. This novel bsAb prevented the outgrowth of AC133-positive subcutaneous GBM xenografts. Moreover, upon intracerebral infusion along with the local application of human CD8(+) T cells, it exhibited potent activity in prophylactic and treatment models of orthotopic GBM-SC-derived invasive brain tumors. In contrast, normal hematopoietic stem cells, some of which are AC133-positive, were virtually unaffected at bsAb concentrations effective against GBM-SCs and retained their colony-forming abilities. In conclusion, our data demonstrate the high activity of this new bsAb against patient-derived AC133-positive GBM-SCs in models of local therapy of highly invasive GBM.


Biochemical and Biophysical Research Communications | 2009

Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

Chizuko Tsurumi; Elke Firat; Simone Gaedicke; Jisen Huai; Pankaj K. Mandal; Gabriele Niedermann

Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

Collaboration


Dive into the Elke Firat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dušan Milanović

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Jisen Huai

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelika Bilger

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Martin-Immanuel Bittner

University Medical Center Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge