Elke Hacker
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elke Hacker.
Pigment Cell & Melanoma Research | 2011
Glen M. Boyle; Susan L. Woods; Vanessa F. Bonazzi; Mitchell S. Stark; Elke Hacker; Lauren G. Aoude; Ken Dutton-Regester; Anthony L. Cook; Richard A. Sturm; Nicholas K. Hayward
To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR‐211. We focused on this pigment‐cell‐enriched miRNA as it is derived from the microphthalmia‐associated transcription factor (MITF)‐regulated gene, TRPM1 (melastatin). We find that miR‐211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR‐211, including POU3F2 (BRN2). Inhibition of miR‐211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR‐211 represses BRN2 in differentiated cells. Over‐expression of miR‐211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non‐overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR‐211 expression.
Journal of Investigative Dermatology | 2010
Elke Hacker; Nicholas K. Hayward; Troy Dumenil; Michael R. James; David C. Whiteman
There is increasing epidemiological and molecular evidence that cutaneous melanomas arise through multiple causal pathways. The purpose of this study was to explore the relationship between germline and somatic mutations in a population-based series of melanoma patients to reshape and refine the divergent pathway model for melanoma. Melanomas collected from 123 Australian patients were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed phenotypic and sun exposure data were systematically collected from all patients. We found that BRAF-mutant melanomas were significantly more likely from younger patients and those with high nevus counts, and were more likely in melanomas with adjacent neval remnants. Conversely, BRAF-mutant melanomas were significantly less likely in people with high levels of lifetime sun exposure. We observed no association between germline MC1R status and somatic BRAF mutations in melanomas from this population. BRAF-mutant melanomas have different origins from other cutaneous melanomas. These data support the divergent pathways hypothesis for melanoma, which may require a reappraisal of targeted cancer prevention activities.
Oncogene | 2011
Amy E. Thurber; G Douglas; E. C. Sturm; S. E. Zabierowski; Darren J. Smit; S. N. Ramakrishnan; Elke Hacker; J. H. Leonard; Meenhard Herlyn; Richard A. Sturm
The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared with adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression, respectively. This links BRN2 as an activator, and conversely, MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense-ablated cell lines decreased the melanoma sphere-forming capability, cell adhesion during 3D-spheroid formation and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere-culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than the growth as adherent melanoma cells.
Cancer Research | 2006
Elke Hacker; H. Konrad Muller; Nicole Irwin; Brian Gabrielli; Douglas J. Lincoln; Sandra Pavey; Marianne Broome Powell; Marcos Malumbres; Mariano Barbacid; Nicholas K. Hayward; Graeme J. Walker
Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.
Journal of Investigative Dermatology | 2009
Graeme J. Walker; Michael G. Kimlin; Elke Hacker; Sugandha Ravishankar; H. Konrad Muller; Friedrich Beermann; Nicholas K. Hayward
Melanocytes respond to UVR not only by producing melanin, but also by proliferating. This is essentially a protective response. We have studied the melanocyte proliferative response after a single UVR exposure to neonatal mice. At 3 days post-UVR in wild-type neonates we observed a marked melanocyte activation not seen in adults. Melanocytes migrated to the epidermal basal layer, their numbers peaking at 3-5 days after UVR then diminishing. They appeared to emanate from the hair follicle, migrating to the epidermis via the outer root sheath. In melanoma-prone mice with melanocyte-specific overexpression of Hras(G12V), basal layer melanocytes were increased in size and dendricity compared to UVR-treated wild-type mice. Melanocytes in mice carrying a pRb pathway cell-cycle defect (oncogenic Cdk4(R24C)) did not show an enhanced response to UVR such as those carrying Hras(G12V). The exquisite sensitivity to UVR-induced proliferation and migration that characterizes neonatal mouse melanocytes may partly explain the utility of this form of exposure for inducing melanoma in mice that carry oncogenic mutations.
Journal of Investigative Dermatology | 2013
Elke Hacker; Eduardo Nagore; Lorenzo Cerroni; Susan L. Woods; Nicholas K. Hayward; Brett Chapman; Grant W. Montgomery; H. Peter Soyer; David C. Whiteman
There is increasing epidemiologic and molecular evidence that cutaneous melanomas arise through multiple causal pathways. To further define the pathways to melanoma, we explored the relationship between germline and somatic mutations in a series of melanomas collected from 134 Spanish and 241 Austrian patients. Tumor samples were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed clinical data were systematically collected from patients. We found that NRAS-mutant melanomas were significantly more likely from older patients and BRAF-mutant melanomas were more frequent in melanomas from the trunk. We observed a nonsignificant association between germline MC1R status and somatic BRAF mutations in melanomas from trunk sites (odds ratio (OR) 1.8 (0.8-4.1), P=0.1), whereas we observed a significant inverse association between MC1R and BRAF for melanomas of the head and neck (OR 0.3 (0.1-0.8), P=0.02). This trend was observed in both the Spanish and Austrian populations.
Journal of Biological Chemistry | 2006
Danielle J. Smyth; Amber Glanfield; Donald P. McManus; Elke Hacker; David Blair; Greg J. Anderson; Malcolm K. Jones
We describe two homologues of the mammalian divalent metal transporter (DMT1) for Schistosoma mansoni, a pathogenic intravascular parasite of humans. Schistosomes have a high nutritional and metabolic demand for iron. Nucleotide sequences of the parasite homologues, designated SmDMT1A and -B, are identical in all but the 5′-regions. The predicted amino acid sequences share at least 60% identity with DMT1 (=Nramp2) of humans, mice, and rats, and at least 55% identity with Nramp1 from mice, humans and Caenorhabditis elegans. SmDMT1A is expressed in differentiating eggs, miracidia, cercariae, schistosomula, and adults, whereas SmDMT1B is expressed in all but the miracidium and occurs at lower levels than SmDMT1A in differentiating eggs and cercariae. An iron-responsive element, present at the 3′-untranslated region of many DMT1 molecules, is not present in schistosome mRNAs studied here. A Western blot analysis of adult worm preparations using a homologous rabbit serum raised against a schistosome DMT1 peptide and a heterologous serum raised against mammalian DMT1, revealed a band approximating 115 kDa. By immunofluorescence microscopy, the schistosome DMT1s localize primarily to the tegument. Iron uptake assays demonstrated that SmDMT1s were able to rescue yeast growth in ferrous iron-transport deficient yeast (fet3fet4). The results suggest that schistosomes express molecules for ferrous iron transport in their tegument, suggesting trans-tegumental transport as one means of iron acquisition for these parasites.
Pigment Cell & Melanoma Research | 2013
Elke Hacker; Zachary Boyce; Michael G. Kimlin; Leesa F. Wockner; Thomas Pollak; Sam A. Vaartjes; Nicholas K. Hayward; David C. Whiteman
We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar‐simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild‐type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.
International Journal of Cancer | 2008
Elke Hacker; H. Konrad Muller; David C. Whiteman; Sandra Pavey; Nicholas K. Hayward; Graeme J. Walker
We previously showed that mice carrying an activated Cdk4 mutation together with melanocyte‐specific mutant Hras (Cdk4R24C/R24C/TPras) develop melanoma spontaneously, but penetrance is increased and age of onset reduced after neonatal ultraviolet radiation (UVR) exposure. UVR‐treated mice were more likely to develop multiple primary lesions, and these melanomas more often expressed Trp53, and less often expressed c‐Myc, than melanomas from nonirradiated mice (Hacker et al., Cancer Res 2006;66:2946–52). These data suggest differences in mechanisms of tumorigenesis between melanomas developing spontaneously, or as a result of UVR exposure. To further delineate these differences, we compared global gene expression between spontaneous and UVR‐induced melanomas from these mice using microarrays. We found 264 genes differentially expressed between these groups (ANOVA, p < 0.05). Selected candidate genes were validated using qRT‐PCR, which confirmed upregulation of Gpr155 and Bmp7, and downregulation of Plagl1, Akap12 and Il18 in UVR‐induced mouse melanomas. In humans, epidemiological studies suggest that there may be 2 predominant pathways to melanoma development. One characterized by chronic UVR exposure and which leads mainly to melanomas on sun‐exposed sites; the other associated with low UVR exposure and leading predominantly to melanomas on less‐exposed body sites. We found by immunohistochemical analysis that, comparing a series of human melanomas from the head (a chronically sun‐exposed site; N = 82) with a set from the trunk (an intermittently exposed site; N = 65), the prevalence of IL‐18 expression was significantly lower in melanomas on the head (16%) than on truncal melanomas (34%, p = 0.011). We conclude that loss of IL‐18 is a marker of UVR‐induced melanoma, both in animal models and humans.
Pigment Cell & Melanoma Research | 2010
Elke Hacker; Hk Muller; Nicholas K. Hayward; Paul Fahey; Graeme J. Walker
To further investigate the use of DNA repair‐enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal‐cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine‐treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR‐initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.