Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elke Müller is active.

Publication


Featured researches published by Elke Müller.


Applied and Environmental Microbiology | 2010

Rapid Microarray-Based Genotyping of Enterohemorrhagic Escherichia coli Serotype O156:H25/H−/Hnt Isolates from Cattle and Clonal Relationship Analysis

Lutz Geue; Susann Schares; Birgit Mintel; Franz Josef Conraths; Elke Müller; Ralf Ehricht

ABSTRACT Since enterohemorrhagic Escherichia coli (EHEC) isolates of serogroup O156 have been obtained from human diarrhea patients and asymptomatic carriers, we studied cattle as a potential reservoir for these bacteria. E. coli isolates serotyped by agglutination as O156:H25/H−/Hnt strains (n = 32) were isolated from three cattle farms during a period of 21 months and characterized by rapid microarray-based genotyping. The serotyping by agglutination of the O156 isolates was not confirmed in some cases by the results of DNA-based serotyping as only 25 of the 32 isolates were conclusively identified as O156:H25. In the multilocus sequence typing (MLST) analysis, all EHEC O156:H25 isolates were characterized as sequence type 300 (ST300) and ST688, which differ by a single-nucleotide exchange in the purA gene. Oligonucleotide microarrays allow simultaneous detection of a wider range of EHEC-associated and other E. coli virulence markers than other methods. All O156:H25 isolates showed a wide spectrum of virulence factors typical for EHEC. The stx1 genes combined with the EHEC hlyA (hlyAEHEC) gene, the eae gene of the ζ subtype, as well as numerous other virulence markers were present in all EHEC O156:H25 strains. The behavior of eight different cluster groups, including four that were EHEC O156:H25, was monitored in space and time. Variations in the O156 cluster groups were detected. The results of the cluster analysis suggest that some O156:H25 strains had the genetic potential for a long persistence in the host and on the farm, while other strains did not. As judged by their pattern of virulence markers, E. coli O156:H25 isolates of bovine origin may represent a considerable risk for human infection. Our results showed that the miniaturized E. coli oligonucleotide arrays are an excellent tool for the rapid detection of a large number of virulence markers.


Antimicrobial Agents and Chemotherapy | 2012

RAPID MICROARRAY BASED IDENTIFICATION OF DIFFERENT mecA ALLELES IN STAPHYLOCOCCI

Stefan Monecke; Elke Müller; Stefan Schwarz; Helmut Hotzel; Ralf Ehricht

ABSTRACT To screen isolates and to identify mecA alleles, published mecA sequences were analyzed, and a microarray for the rapid discrimination of mecA alleles was designed. A GenBank analysis yielded 135 full-length gene sequences annotated as mecA. These sequences clustered into 32 different alleles corresponding to 28 unique amino acid sequences and to 15 distinct hybridization patterns on this microarray. A collection of 78 clinical and veterinary isolates of Staphylococcus spp. was characterized using this assay. Nine of the 15 expected patterns, as well as one as-yet-unknown pattern, were identified. These patterns were detected in various epidemic methicillin-resistant Staphylococcus aureus strains, in S. pseudintermedius, and in coagulase-negative species such as S. epidermidis, S. fleurettii, or S. haemolyticus. There was no correlation between the different mecA hybridization patterns and the SCCmec type. Determination of MICs showed that mecA alleles corresponding to only four of these nine patterns were associated with β-lactam resistance. The mecA alleles that did not confer β-lactam resistance were largely restricted to coagulase-negative staphylococci of animal origin, such as S. sciuri and S. vitulinus. Because of the diversity of sequences and the different impact on β-lactam susceptibility, the existence of different mecA alleles needs to be taken into account when designing diagnostic assays for the detection of mecA.


Journal of Clinical Microbiology | 2013

Rapid Detection of Panton-Valentine Leukocidin in Staphylococcus aureus Cultures by Use of a Lateral Flow Assay Based on Monoclonal Antibodies

Stefan Monecke; Elke Müller; J. Buechler; J. Rejman; Bettina Stieber; Patrick Eberechi Akpaka; Dirk Bandt; R. Burris; Geoffrey W. Coombs; G.A. Hidalgo-Arroyo; P. Hughes; Angela M. Kearns; S.M. Abos; Bruno Pichon; Leila Skakni; Bo Söderquist; Ralf Ehricht

ABSTRACT Panton-Valentine leukocidin (PVL) is a virulence factor of Staphylococcus aureus, which is associated with skin and soft-tissue infections and necrotizing pneumonia. To develop a rapid phenotypic assay, recombinant PVL F component was used to generate monoclonal antibodies by phage display. These antibodies were spotted on protein microarrays and screened using different lukF-PV preparations and detection antibodies. This led to the identification of the optimal antibody combination that was then used to establish a lateral flow assay. This test was used to detect PVL in S. aureus cultures. The detection limit of the assay with purified native and recombinant antigens was determined to be around 1 ng/ml. Overnight cultures from various solid and liquid media proved suitable for PVL detection. Six hundred strains and clinical isolates from patients from America, Europe, Australia, Africa, and the Middle East were tested. Isolates were genotyped in parallel by DNA microarray hybridization for confirmation of PVL status and assignment to clonal complexes. The sensitivity, specificity, and positive and negative predictive values of the assay in this trial were 99.7, 98.3, 98.4, and 99.7%, respectively. A total of 302 clinical isolates and reference strains were PVL positive and were assigned to 21 different clonal complexes. In summary, the lateral flow test allows rapid and economical detection of PVL in a routine bacteriology laboratory. As the test utilizes cultures from standard media and does not require sophisticated equipment, it can be easily integrated into a laboratorys workflow and might contribute to timely therapy of PVL-associated infections.


PLOS ONE | 2014

Molecular typing of MRSA and of clinical Staphylococcus aureus isolates from Iaşi, Romania.

Stefan Monecke; Elke Müller; Olivia Dorneanu; Teodora Vremeră; Ralf Ehricht

Romania is one of the countries with the highest prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the world. To obtain data on affiliation of MRSA to strains and clonal complexes and on the population of methicillin susceptible S. aureus (MSSA), clinical isolates from bloodstream infections, skin and soft tissue infections as well as from screening swabs were collected at hospitals in Ia?i, a city in the North-Eastern part of Romania. Isolates were characterised by microarray hybridisation. Nearly half of all isolates (47%), and about one third (34%) of bloodstream isolates were MRSA. The prevalence of the Panton-Valentine leukocidin (PVL) was also high (31% among MRSA, 14% among MSSA). The most common MRSA strain was a PVL-negative CC1-MRSA-IV that might have emerged locally, as a related MSSA was also common. PVL-positive CC8-MRSA-IV (“USA300”) and PVL-negative ST239-like MRSA-III were also frequently found while other MRSA strains were only sporadically detected. Among MSSA, PVL-positive CC121 as well as PVL-negative CC1, CC22 and CC45 predominated. Although this study provides only a snapshot of S. aureus/MRSA epidemiology in Romania, it confirms the high burden of MRSA and PVL on Romanian healthcare settings.


Journal of Dairy Science | 2014

Multiple cases of methicillin-resistant CC130 Staphylococcus aureus harboring mecC in milk and swab samples from a Bavarian dairy herd

K. Schlotter; R. Huber-Schlenstedt; A. Gangl; Helmut Hotzel; Stefan Monecke; Elke Müller; A. Reißig; S. Proft; Ralf Ehricht

The discovery of a new mecA homolog, mecC, necessitates a modification of diagnostic procedures for the identification of methicillin-resistant Staphylococcus aureus (MRSA), as most assays used for the genotypic and phenotypic mecA detection cannot currently recognize mecC. Although the prevalence, distribution, and importance of mecC are not yet completely understood, an exchange of mecC-MRSA between humans and animals seems possible. All previously reported observations of mecC-positive strains have been sporadic. To the best of our knowledge, this is the first report about multiple cases of mecC-positive Staph. aureus in 1 dairy herd. Clonal complex 130 Staph. aureus harboring mecC were found in milk samples from 16 of 56 lactating cows kept in a herd in Bavaria, Germany. Almost all quarter milk samples positive for mecC-MRSA had the lowest possible California Mastitis Test score; composite somatic cell counts obtained from monthly milk recordings showed a mean of 51,600 cells/mL in mecC-MRSA affected cows. Additionally, mecC-positive clonal complex 130 Staph. aureus were detected in swab samples from the mammary skin and a teat lesion of 1 cow from this herd. This report suggests that mecC-carrying strains are able to spread among livestock, and that they have the ability to cause multiple cases in single herds. Therefore, future studies targeting MRSA in dairy cows need to consider mecC.


PLOS ONE | 2010

Characterisation of Australian MRSA Strains ST75- and ST883-MRSA-IV and Analysis of Their Accessory Gene Regulator Locus

Stefan Monecke; Hanna Kanig; Wolfram W. Rudolph; Elke Müller; Geoffrey W. Coombs; Helmut Hotzel; Peter Slickers; Ralf Ehricht

Background Community-acquired methicillin-resistant Staphylococcus aureus have become a major problem in Australia. These strains have now been isolated throughout Australia including remote Indigenous communities that have had minimal exposure to healthcare facilities. Some of these strains, belonging to sequence types ST75 and ST883, have previously been reported to harbour highly divergent alleles of the housekeeping genes used in multilocus sequence typing. Methodology/Principal Findings ST75-MRSA-IV and ST883-MRSA-IV isolates were characterised in detail. Morphological features as well as 16S sequences were identical to other S. aureus strains. Although a partial rnpB gene sequence was not identical to previously known S. aureus sequences, it was found to be more closely related to S. aureus than to other staphylococci. Isolates also were screened using diagnostic DNA microarrays. These isolates yielded hybridisation results atypical for S. aureus. Primer directed amplification assays failed to detect species markers (femA, katA, sbi, spa). However, arbitrarily primed amplification indicated the presence of unknown alleles of these genes. Isolates could not be assigned to capsule types 1, 5 or 8. The allelic group of the accessory gene regulator (agr) locus was not determinable. Sequencing of a region of agrB, agrC and agrD (approximately 2,100 bp) revealed a divergent sequence. However, this sequence is more related to S. aureus agr alleles I and IV than to agr sequences from other Staphylococcus species. The predicted auto-inducing peptide (AIP) sequence of ST75 was identical to that of agr group I, while the predicted AIP sequence of ST883 was identical to agr group IV. Conclusions/Significance The genetic properties of ST75/ST883-MRSA may be due to a series of evolutionary events in ancient insulated S. aureus strains including a convergent evolution leading to agr group I- or IV-like AIP sequences and a recent acquisition of SCCmec IV elements.


PLOS ONE | 2016

Diversity of SCCmec Elements in Staphylococcus aureus as Observed in South-Eastern Germany.

Stefan Monecke; Lutz Jatzwauk; Elke Müller; Hedda Nitschke; Katharina Pfohl; Peter Slickers; Annett Reissig; Antje Ruppelt-Lorz; Ralf Ehricht

SCCmec elements are very important mobile genetic elements in Staphylococci that carry beta-lactam resistance genes mecA/mecC, recombinase genes and a variety of accessory genes. Twelve main types and a couple of variants have yet been described. In addition, there are also other SCC elements harbouring other markers. In order to subtype strains of methicillin-resistant S. aureus (MRSA) based on variations within their SCCmec elements, 86 markers were selected from published SCC sequences for an assay based on multiplexed primer extension reactions followed by hybridisation to the specific probes. These included mecA/mecC, fusC, regulatory genes, recombinase genes, genes from ACME and heavy metal resistance loci as well as several genes of unknown function. Hybridisation patterns for published genome or SCC sequences were theoretically predicted. For validation of the microarray based assay and for stringent hybridisation protocol optimization, real hybridization experiments with fully sequenced reference strains were performed modifying protocols until yielded the results were in concordance to the theoretical predictions. Subsequently, 226 clinical isolates from two hospitals in the city of Dresden, Germany, were characterised in detail. Beside previously described types and subtypes, a wide variety of additional SCC types or subtypes and pseudoSCC elements were observed as well as numerous composite elements. Within the study collection, 61 different such elements have been identified. Since hybridisation cannot recognise the localisation of target genes, gene duplications or inversions, this is a rather conservative estimate. Interestingly, some widespread epidemic strains engulf distinct variants with different SCCmec subtypes. Notable examples are ST239-MRSA-III, CC5-, CC22-, CC30-, and CC45-MRSA-IV or CC398-MRSA-V. Conversely, identical SCC elements were observed in different strains with SCCmec IVa being spread among the highest number of Clonal Complexes. The proposed microarray can help to distinguish isolates that appear similar or identical by other typing methods and it can be used as high-throughput screening tool for the detection of putative new SCC types or variants that warrant further investigation and sequencing. The high degree of diversity of SCC elements even within so-called strains could be helpful for epidemiological typing. It also raises the question on scale and speed of the evolution of SCC elements.


PLOS ONE | 2014

Staphylococcus aureus In Vitro Secretion of Alpha Toxin (hla) Correlates with the Affiliation to Clonal Complexes

Stefan Monecke; Elke Müller; Joseph Büchler; Bettina Stieber; Ralf Ehricht

The alpha toxin of Staphylococcus aureus is a pore forming toxin that penetrates host cell membranes causing osmotic swelling, rupture, lysis and subsequently cell death. Haemolysin alpha is toxic to a wide range of different mammalian cells; i.e., neurotoxic, dermonecrotic, haemolytic, and it can cause lethality in a wide variety of animals. In this study, the in vitro alpha toxin production of 648 previously genotyped isolates of S. aureus was measured quantitatively using antibody microarrays. Isolates originated from medical and veterinary settings and were selected in order to represent diverse clonal complexes and defined clinical conditions. Generally, the production of alpha toxin in vitro is related to the clonal complex affiliation. For clonal complexes CC22, CC30, CC45, CC479, CC705 and others, invariably no alpha toxin production was noted under the given in vitro conditions, while others, such as CC1, CC5, CC8, CC15 or CC96 secreted variable or high levels of alpha toxin. There was no correlation between alpha toxin yield and clinical course of the disease, or between alpha toxin yield and host species.


Proteomics Clinical Applications | 2015

Microarray-based identification of human antibodies against Staphylococcus aureus antigens

Peggy Kloppot; Martina Selle; Christian Kohler; Sebastian Stentzel; Stephan Fuchs; Volkmar Liebscher; Elke Müller; Devika Kale; Knut Ohlsen; Barbara M. Bröker; Peter F. Zipfel; Barbara C. Kahl; Ralf Ehricht; Michael Hecker; Susanne Engelmann

The mortality rate of patients with Staphylococcus aureus infections is alarming and urgently demands new strategies to attenuate the course of these infections or to detect them at earlier stages.


Scientific Reports | 2016

Global antibody response to Staphylococcus aureus live-cell vaccination

Martina Selle; Tobias Hertlein; Babett Oesterreich; Theresa Klemm; Peggy Kloppot; Elke Müller; Ralf Ehricht; Sebastian Stentzel; Barbara M. Bröker; Susanne Engelmann; Knut Ohlsen

The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.

Collaboration


Dive into the Elke Müller's collaboration.

Top Co-Authors

Avatar

Ralf Ehricht

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Monecke

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bettina Stieber

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Helmut Hotzel

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antje Ruppelt-Lorz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Ohlsen

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Lutz Jatzwauk

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge