Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ella Magal is active.

Publication


Featured researches published by Ella Magal.


The Journal of Neuroscience | 2007

The Vanilloid Receptor TRPV1 Is Tonically Activated In Vivo and Involved in Body Temperature Regulation

Narender R. Gavva; Anthony W. Bannon; Sekhar Surapaneni; David N. Hovland; Sonya G. Lehto; Anu Gore; Todd Juan; Hong Deng; Bora Han; Lana Klionsky; Rongzhen Kuang; April Le; Rami Tamir; Jue Wang; Brad Youngblood; Dawn Zhu; Mark H. Norman; Ella Magal; James J. S. Treanor; Jean-Claude Louis

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood–brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.


Hearing Research | 1998

Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma

Jukka Ylikoski; Ulla Pirvola; Jussi Virkkala; P Suvanto; X.-Q Liang; Ella Magal; Richard A. Altschuler; Josef M. Miller; Mart Saarma

For patients with profound hearing loss, cochlear implants have become the treatment of choice. These devices provide auditory information through direct electrical stimulation of the auditory nerve. Prosthesis function depends on survival and electrical excitability of the cochlear neurons. Degeneration of the auditory nerve occurs after lesions of its peripheral target field (organ of Corti), specifically, including loss of inner hair cells (IHCs). There is now evidence that local treatment of the cochlea with neurotrophins may enhance survival of auditory neurons after aminoglycoside-induced deafness. Glial cell line-derived neurotrophic factor (GDNF) has recently been shown to be an important survival factor in other regions of the nervous system. By in situ hybridization, we now show that IHCs of the neonatal and mature rat cochlea synthesize GDNF and that GDNF-receptor alpha, but not c-Ret, is expressed in the rat spiral ganglion. We also show that GDNF is a potent survival-promoting factor for rat cochlear neurons in vitro. Finally, we examined GDNF efficacy to enhance cochlear-nerve survival after IHC lesions in vivo. We found that chronic intracochlear infusion of GDNF greatly enhances survival of guinea pig cochlear neurons after noise-induced IHC lesions. Our results demonstrate that GDNF is likely to be an endogeneous survival factor in the normal mammalian cochlea and it could have application as a pharmacological treatment to prevent secondary auditory nerve degeneration following organ of Corti damage.


Jaro-journal of The Association for Research in Otolaryngology | 2000

Spiral ganglion neurons are protected from degeneration by GDNF gene therapy

Masao Yagi; Sho Kanzaki; Kohei Kawamoto; Brian Shin; Pratik P. Shah; Ella Magal; Jackie Zeqi Sheng; Yehoash Raphael

Perceptual benefits from the cochlear prosthesis are related to the quantity and quality of the patients auditory nerve population. Multiple neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have been shown to have important roles in the survival of inner ear auditory neurons, including protection of deafferented spiral ganglion cells (SGCs). In this study, GDNF gene therapy was tested for its ability to enhance survival of SGCs after aminoglycoside/diuretic-induced insult that eliminated the inner hair cells. The GDNF transgene was delivered by adenoviral vectors. Similar vectors with a reporter gene (lacZ) insert served as controls. Four or seven days after bilateral deafening, 5 microl of an adenoviral suspension (Ad-GDNF or Ad-lacZ) or an artificial perilymph was injected into the left scala tympani of guinea pigs. Animals were sacrificed 28 days after deafening and their inner ears prepared for SGC counts. Adenoviral-mediated GDNF transgene expression enhanced SGC survival in the left (viral-treated) deafened ears. This observation suggests that GDNF is one of the survival factors in the inner ear and may help maintain the auditory neurons after insult. Application of GDNF and other survival factors via gene therapy has great potential for inducing survival of auditory neurons following hair cell loss.


Journal of Pharmacology and Experimental Therapeutics | 2008

Antihyperalgesic Effects of (R,E)-N-(2-Hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a Novel Transient Receptor Potential Vanilloid Type 1 Modulator That Does Not Cause Hyperthermia in Rats

Sonya G. Lehto; Rami Tamir; Deng H; Lana Klionsky; Rongzhen Kuang; Le A; Lee D; Jean-Claude Louis; Ella Magal; Manning Bh; Rubino J; Sekhar Surapaneni; Tamayo N; Wang T; Judy Wang; Weiya Wang; Youngblood B; Zhang M; Dawn Zhu; Mark H. Norman; Narender R. Gavva

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freunds adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models.


Human Gene Therapy | 1999

Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor.

Masao Yagi; Ella Magal; Zeqi Sheng; Kathleen A. Ang; Yehoash Raphael

Aminoglycosides are commonly used antimicrobial drugs that often have ototoxic side effects. The ototoxicity often involves permanent loss of cochlear hair cells (HCs). Neurotrophic factors have been shown to protect a variety of tissues, including HCs, from toxic trauma. To determine if glial cell line-derived neurotrophic factor (GDNF) can protect cochlear HCs from trauma, we inoculated an adenoviral vector encoding the human GDNF gene into guinea pig cochleae via the round window membrane 4 days prior to injection of aminoglycosides. Control groups showed little or no negative influence of the viral inoculation on cochlear structure and function. In contrast, ears that were inoculated with the GDNF vector had better hearing and fewer missing HCs after exposure to the ototoxins, as compared with controls. Our results demonstrate the feasibility of gene therapy for cochlear application and suggest that virus-mediated overexpression of GDNF may be developed as a valuable prevention against trauma-induced HC death.


Journal of Pharmacology and Experimental Therapeutics | 2007

Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade

Narender R. Gavva; Anthony W. Bannon; David N. Hovland; Sonya G. Lehto; Lana Klionsky; Sekhar Surapaneni; David Immke; Charles Henley; Leyla Arik; Annette Bak; James O. Davis; Nadia Ernst; Gal Hever; Rongzhen Kuang; Licheng Shi; Rami Tamir; Jue Wang; Weiya Wang; Gary Zajic; Dawn Zhu; Mark H. Norman; Jean-Claude Louis; Ella Magal; James J. S. Treanor

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.


Stroke | 2005

Neuroprotective Effect of Darbepoetin Alfa, a Novel Recombinant Erythropoietic Protein, in Focal Cerebral Ischemia in Rats

Ludmila Belayev; Weizhao Zhao; Alexey Vigdorchik; Andrey Belayev; Raul Busto; Ella Magal; Myron D. Ginsberg

Background and Purpose— Darbepoetin alfa is a novel erythropoiesis-stimulating protein developed for treating anemia. In animal models, exogenous recombinant human erythropoietin has been reported to be beneficial in treating experimental cerebral ischemia. In this study, we determined whether darbepoetin alfa would protect in a rat model of transient focal cerebral ischemia. Methods— Rats received 2-hour middle cerebral artery suture-occlusion. The drug (darbepoetin alfa, 10 &mgr;g/kg) or vehicle was administered intraperitoneally 2 hours after onset of middle cerebral artery occlusion. Animals were allowed to survive for 3 or 14 days. Behavioral tests were performed sequentially. Infarct volumes and brain swelling were determined. Results— Darbepoetin alfa-treated rats showed improved neuroscores relative to vehicle-treated animals beginning within 1 hour of treatment and persisting throughout the 14-day survival period. Darbepoetin alfa significantly reduced corrected total (cortical + subcortical) infarct volume (56.3±20.6 and 110.8±6.8 mm3, respectively) and total infarct areas at multiple levels compared with vehicle in the 14-day survival group. Brain swelling was not affected by treatment. Conclusion— Darbepoetin alfa confers behavioral and histological neuroprotection after focal ischemia in rats.


Annals of the New York Academy of Sciences | 1999

Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors

Richard A. Altschuler; Younsook Cho; Jukka Ylikoski; Ulla Pirvola; Ella Magal; Josef M. Miller

ABSTRACT: Trauma and loss of cochlear inner hair cells causes a series of events that result first in the retraction of the peripheral processes of the auditory nerve, scar formation in the organ of Corti, and over the course of weeks to months (depending on the species) the loss of auditory nerve cell bodies (spiral ganglion cells). Neurotrophic factors play an important role in the mature nervous system as survival factors for maintenance and protection and also can play a role in regrowth. Studies in the cochlea now show that application of exogenous neurotrophic factors can enhance survival of spiral ganglion cells after deafness and induce regrowth of peripheral processes, perhaps by replacing lost endogenous factors. Combinations of factors may be most effective for achieving greatest survival and regrowth. Our studies find that brain‐derived neurotrophic factor (BDNF) and glial‐line‐derived neurotrophic factor (GDNF) are very effective at enhancing spiral ganglion cell survival following deafness from ototoxic drugs or noise. It has also been found that BDNF plus fibroblast growth factor (FGF) is very effective at inducing process regrowth. Electrical stimulation also acts to enhance spiral ganglion cell survival, and the combination of electrical stimulation and neurotrophic factors could prove a most effective intervention.


Hearing Research | 2000

Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea

Fumi Shoji; Tatsuya Yamasoba; Ella Magal; David F. Dolan; Richard A. Altschuler; Josef M. Miller

We examined the effectiveness of glial cell line-derived neurotrophic factor (GDNF) to attenuate cochlear damage from intense noise stress. Subjects were exposed to 115 dB SPL one octave band noise centered at 4 kHz for 5 h. They received artificial perilymph with or without GDNF into the left scala tympani at 0.5 microliter/h from 4 days before noise exposure through 8 days following noise exposure. Different concentrations of GDNF (1 ng/ml, 10 ng/ml, 100 ng/ml, and 1 microgram/ml) were applied chronically directly into the guinea pig cochlea via a microcannula and osmotic pump. Noise-induced hearing loss was assessed with pure tone auditory brainstem responses (at 2, 4, 8 and 20 kHz), measured prior to surgery, 1 day before noise exposure, and 7 days following noise exposure. Subjects were killed on day 8 following exposure for histological preparation and quantitative assessment of hair cell (HC) damage. A dose-dependent protective effect of GDNF on both sensory cell preservation and hearing function was found in the treated ears. At 1 ng/ml, GDNF showed no significant protection; at 10 ng/ml, GDNF showed significant HC protection; and at 100ng/ml, it was greater and bilateral. At 1 microgram/ml, GDNF appeared to have a toxic effect under noise stress in some cochleae. These findings indicate that GDNF at certain concentrations can effectively protect the inner ear from noise-induced hearing loss.


Annals of the New York Academy of Sciences | 1999

Glial cell line-derived neurotrophic factor. Potential for otoprotection.

R. Kuang; G. Hever; Gary Zajic; Q. Yan; F. Collins; J.-C. Louis; Elizabeth M. Keithley; Ella Magal

ABSTRACT: Sensorineural hearing loss results from the degeneration of hair cells and/or auditory neurons in the cochlea of the inner ear. BDNF and NT‐3 were shown to support survival of auditory neurons both in vitro and in vivo. Cochlea from P3‐P4 rats were cultured as floating explants and hair cells in the organ of Corti were identified by phalloidin‐FITC immunostaining. Treatment with cisplatin (35 μg/mL) or neomycin (0.6 mM) resulted in 21.2 ± 6.0% and 7.4 ± 4.7% surviving hair cells, respectively, after 3 days in culture. GDNF, added together with the ototoxins, increased their number to 46.7% and 37.4%, respectively. In cultures of dissociated cochlea from 4‐week‐old rat, cisplatin (5 mg/mL) added 24 h after seeding resulted in only 6.1 ± 1.2% surviving neurons. However, when cisplatin was added together with GDNF (10 ng/mL), 32.8 ± 1.0% of the neurons survived. The efficacy of GDNF in animal models of ototoxicity was tested next. Guinea pigs were pretreated with GDNF in one ear, delivered either by infusion into the inner ear (scala tympani) with Alzet minipumps (50 ng/mL at a 0.5 μL/h), or injected into the middle ear (120 μL at 1 mg/mL) through the tympanic membrane. The ear that did not receive GDNF always served as control. Ototoxicity was induced systemically either by intraperitoneal cisplatin injections (1 mg/kg/day for 15 days or two injections of 7.5 mg/kg at a 5‐day interval or by a combination of kanamycin (200–300 mg/kg, administered subcutaneously) and ethacrinic acid (40 mg/kg, intravenous). It was found that the number of surviving hair cells in GDNF‐treated ears was about twice that of control ears in animals exposed to the ototoxins. The transducing GDNF receptor (ret) is expressed in the inner ear.

Collaboration


Dive into the Ella Magal's collaboration.

Researchain Logo
Decentralizing Knowledge