Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen Cristini de Freitas is active.

Publication


Featured researches published by Ellen Cristini de Freitas.


Nutrition | 2013

Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans.

Rafael Deminice; Flávia Troncon Rosa; Gabriel Silveira Franco; Alceu Afonso Jordão; Ellen Cristini de Freitas

OBJECTIVE The goal of this study was to evaluate the effects of creatine (Cr) supplementation on oxidative stress and inflammation markers after acute repeated-sprint exercise in humans. METHODS Twenty-five players under age 20 y were randomly assigned to two groups: Cr supplemented and placebo. Double-blind controlled supplementation was performed using Cr (0.3 g/kg) or placebo tablets for 7 d. Before and after 7 d of supplementation, the athletes performed two consecutive Running-based Anaerobic Sprint Tests (RAST). RAST consisted of six 35-m sprint runs at maximum speed with 10 sec rest between them. Blood samples were collected just prior to start of test (pre), just after the completion (0 h), and 1 h after completion. RESULTS Average, maximum, and minimum power values were greater in the Cr-supplemented group compared with placebo (P < 0.05). There were significant increases (P < 0.05) in plasma tumor necrosis factor alpha (TNF-α) and C-reactive protein (CRP) up to 1 h after acute sprint exercise in the placebo-supplemented group. Malondialdehyde, lactate dehydrogenase (LDH), catalase, and superoxide dismutase enzymes also were increased after exercise in both groups. Red blood cell glutathione was lower after exercise in both groups. Cr supplementation reversed the increase in TNF-α and CRP as well as LDH induced by acute exercise. Controversially, Cr supplementation did not inhibit the rise in oxidative stress markers. Also, antioxidant enzyme activity was not different between placebo and Cr-supplemented groups. CONCLUSION Cr supplementation inhibited the increase of inflammation markers TNF-α and CRP, but not oxidative stress markers, due to acute exercise.


Medicine and Science in Sports and Exercise | 2014

Eccentric exercise leads to performance decrease and insulin signaling impairment.

Bruno Pereira; José Rodrigo Pauli; Cláudio T. De Souza; Eduardo R. Ropelle; Dennys E. Cintra; Ellen Cristini de Freitas; Adelino Sanchez Ramos da Silva

PURPOSE This study aimed to evaluate the effects of an overtraining (OT) protocol based on eccentric exercise (EE) sessions on the insulin and inflammatory signaling pathways in the skeletal muscles of Swiss mice. METHODS Rodents were divided into control (C; sedentary mice), trained (TR; performed the aerobic training protocol), and overtrained (OTR; performed the OT protocol). The incremental load test and exhaustive test were used to measure performances before and after exercise protocols. Twenty-four hours after the exhaustive test performed at the end of week 8, the extensor digitorum longus (EDL) and soleus muscles were removed for subsequent protein analysis by immunoblotting. RESULTS The phosphorylation of insulin receptor beta (pIRbeta; Tyr1146) diminished for EDL and soleus muscles in OTR compared with C. The phosphorylation of insulin receptor substrate 1 (pIRS-1; Ser307) increased for EDL and soleus muscles in OTR compared with C and TR. The phosphorylation of protein kinase B (pAkt; Ser473) diminished for EDL and soleus muscles in OTR compared with C and TR. The phosphorylation of IκB kinase alpha and beta (pIKKalpha/beta; Ser176/180), stress-activated protein kinases/Jun amino-terminal kinases (pSAPK/JNK; Thr183/Tyr185), and the protein levels of suppressor of cytokine signaling 3 (SOCS3) increased for EDL and soleus muscles in OTR compared with C and TR. CONCLUSION In summary, the current used OT protocol based on eccentric exercise sessions impaired the insulin signaling pathway with concomitant increases of IKK, SAPK/JNK, and SOCS3 protein levels.


Nutrition | 2012

Evidence of zinc deficiency in competitive swimmers.

Flávia Giolo de Carvalho; Flávia Troncon Rosa; Vivian Marques Miguel Suen; Ellen Cristini de Freitas; Gilberto Jose Padovan; Júlio Sérgio Marchini

OBJECTIVE The aim of this study was to assess the nutritional zinc (Zn) status of elite swimmers during different training periods. METHODS A longitudinal paired study was performed at the University of Sao Paulo in eight male swimmers 18 to 25 y old who had been swimming competitively at the state and national levels for at least 5 y. The swimmers were evaluated over a total period of 14 wk: before the basic and specific preparatory period (BSPP-baseline), at the end of the basic and specific preparatory period (post-BSPP), and at the end of the polishing period (PP). Levels of Zn were determined in the plasma, erythrocyte, urine, and saliva by atomic absorption spectrophotometry. Anthropometric measurements and a 3-d food record were also evaluated. RESULTS The median plasma Zn concentration was below the reference value in all training periods (BSPP-baseline 59 μg/dL, post-BSPP 55.9 μg/dL, after PP 58.8 μg/dL, P > 0.05), as were threshold values for erythrocytes (BSPP-baseline 36.5 μg of Zn/g of hemoglobin, post-BSPP 42 μg of Zn/g of hemoglobin, after PP 40.7 μg of Zn/g of hemoglobin, P > 0.05), urinary Zn (BSPP-baseline 280 μg/24 h, post-BSPP 337 μg/24 h, after PP 284 μg/24 h, P > 0.05), and salivary Zn (BSPP-baseline 66.1 μg/L, post-BSPP 54.1 μg/L, after PP 79.7 μg/L, P > 0.05). Salivary Zn did not correlate with plasma and erythrocyte Zn levels. CONCLUSION The results suggest that the elite swimmers studied presented a possible Zn deficiency and that salivary Zn was not adequate to evaluate the Zn nutritional status.


Applied Physiology, Nutrition, and Metabolism | 2016

Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear

Fabio Milioni; Elvis de Souza Malta; Leandro George Spinola do Amaral Rocha; Camila Angélica Asahi Mesquita; Ellen Cristini de Freitas; Alessandro Moura Zagatto

The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg(-1)·min(-1)) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg(-1); p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.


BMC Physiology | 2013

Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice

Bruno Pereira; José Rodrigo Pauli; Lusânia Maria Greggi Antunes; Ellen Cristini de Freitas; Mara Ribeiro Almeida; Vinícius de Paula Venâncio; Eduardo R. Ropelle; Cláudio T. De Souza; Dennys E. Cintra; Marcelo Papoti; Adelino Sanchez Ramos da Silva

BackgroundThe alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples.ResultsPerformance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups.ConclusionsAerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.


Life Sciences | 2016

Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles

Bruno Pereira; Alisson L. da Rocha; Ana P. Pinto; José Rodrigo Pauli; Cláudio T. De Souza; Dennys E. Cintra; Eduardo R. Ropelle; Ellen Cristini de Freitas; Alessandro Moura Zagatto; Adelino Sanchez Ramos da Silva

AIMS The present study verified the responses of selected endoplasmic reticulum (ER) stress proteins (i.e., BiP, ATF-6, pIRE1, pPERK, and peIF2alpha) in mice skeletal muscles after three different running overtraining (OT) protocols with same external load (i.e., intensity vs. volume), but performed in downhill, uphill and without inclination. MATERIALS AND METHODS The rodents were randomly divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR) groups. The incremental load test and exhaustive test were used as performance parameters. Forty hours after the exhaustive test performed at the end of the OT protocols (i.e., at the end of week 8) and after a 2-week total recovery period (i.e., at the end of week 10), the extensor digitorum longus (EDL) and soleus muscles were removed and used for immunoblotting. KEY FINDINGS For both skeletal muscle types, the OTR/down protocol increased the pIRE-1, pPERK and peIF2alpha, which were not normalized after the total recovery period. At the end of week 8, the other two OT protocols up-regulated the BiP, pPERK and peIF2alpha levels only for the soleus muscle. These ER stress proteins were not normalized after the total recovery period for the OTR/up group. SIGNIFICANCE The above findings suggest that the OTR/down protocol-induced skeletal muscle ER stress may be linked to a pathological condition in EDL and soleus muscles.


Journal of Endocrinology | 2016

Excessive training impairs the insulin signal transduction in mice skeletal muscles

Bruno Pereira; Alisson L. da Rocha; Ana P. Pinto; José Rodrigo Pauli; Leandro Pereira de Moura; Rania A. Mekary; Ellen Cristini de Freitas; As da Silva

The main aim of this investigation was to verify the effects of overtraining (OT) on the insulin and inflammatory signaling pathways in mice skeletal muscles. Rodents were divided into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. Thirty-six hours after the grip force test, the extensor digitorum longus (EDL) and soleus were extracted for subsequent protein analyses. The three OT protocols led to similar responses of all performance evaluation tests. The phosphorylation of insulin receptor beta (pIRβ; Tyr), protein kinase B (pAkt; Ser473), and the protein levels of plasma membrane glucose transporter-4 (GLUT4) were lower in the EDL and soleus after the OTR/down protocol and in the soleus after the OTR/up and OTR protocols. While the pIRβ was lower after the OTR/up and OTR protocols, the pAkt was higher after the OTR/up in the EDL. The phosphorylation of IκB kinase alpha and beta (pIKKα/β; Ser180/181), stress-activated protein kinases/Jun amino-terminal kinases (pSAPK-JNK; Thr183/Tyr185), factor nuclear kappa B (pNFκB p65; Ser536), and insulin receptor substrate 1 (pIRS1; Ser307) were higher after the OTR/down protocol, but were not altered after the two other OT protocols. In summary, these data suggest that OT may lead to skeletal muscle insulin signaling pathway impairment, regardless of the predominance of eccentric contractions, although the insulin signal pathway impairment induced in OTR/up and OTR appeared to be muscle fiber-type specific.


Frontiers in Immunology | 2017

Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice

Alisson L. da Rocha; Bruno Pereira; Giovana R. Teixeira; Ana P. Pinto; Fabiani G. Frantz; Lucila Leico Kagohara Elias; Fábio Santos Lira; José Rodrigo Pauli; Dennys E. Cintra; Eduardo R. Ropelle; Leandro Pereira de Moura; Rania A. Mekary; Ellen Cristini de Freitas; Adelino Sanchez Ramos da Silva

Overtraining (OT) may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down) protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β), IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume), but performed in uphill (OTR/up) and without inclination (OTR). Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR) and glucocorticoid receptor (GR) expressions. For extensor digitorum longus (EDL), OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.


Frontiers in Physiology | 2017

Taurine: A Potential Ergogenic Aid for Preventing Muscle Damage and Protein Catabolism and Decreasing Oxidative Stress Produced by Endurance Exercise

Flávia Gd Carvalho; Bryan S. M. Galan; Priscila C. Santos; Kelly Pritchett; Karina Pfrimer; Eduardo Ferriolli; Marcelo Papoti; Júlio Sérgio Marchini; Ellen Cristini de Freitas

The aim of this study was to evaluate the effects of taurine and chocolate milk supplementation on oxidative stress and protein metabolism markers, and aerobic parameters in triathletes. Methods: A double-blind, crossover study was conducted with 10 male triathletes, aged 30.9 ± 1.3 year, height 1.79 ± 0.01 m and body weight 77.45 ± 2.4 kg. Three grams of taurine and 400 ml of chocolate milk (TAUchoc), or a placebo (chocolate milk) (CHOC) was ingested post exercise for 8 weeks. Oxidative stress marker levels, and 24 h urinary nitrogen, creatinine, and urea excretion were measured before and after 8 weeks of training and supplementation with TAUchoc or CHOC. A maximal incremental running test on a treadmill was performed in order to evaluate aerobic parameters: Vmax, heart rate (HR) and rate of perceived exertion (RPE). Results: TAUchoc treatment during the 8 weeks resulted in increased taurine plasma levels (PRE 201.32 ± 29.03 μmol/L and POST 234.36 ± 35.51 μmol/L, p = 0.01), decreased malondialdehyde levels (19.4%, p = 0.03) and urinary nitrogen excretion (−33%, p = 0.03), and promoted positive nitrogen balance (p = 0.01). There were no changes in reduced glutathione (TAUchoc PRE 0.72 ± 0.08 mmol/L and POST 0.83 ± 0.08 mmol/L; CHOC PRE 0.69 ± 0.08 mmol/L and POST 0.81 ± 0.06 mmol/L), vitamin E plasma levels (TAUchoc PRE 33.99 ± 2.52 μmol/L and 35.95 ± 2.80 μmol/L and CHOC PRE 31.48 ± 2.12 μmol/L and POST 33.77 ± 3.64 μmol/L), or aerobic parameters, which were obtained in the last phase of the maximal incremental running test (Vmax TAUchoc PRE 13 ± 1.4 km/h and POST 13.22 ± 1.34 km/h; CHOC PRE 13.11 ± 2.34 km/h and POST 13.11 ± 2.72 km/h), the heart rate values were TAUchoc PRE 181.89 ± 24.18 bpm and POST 168.89 ± 46.56 bpm; CHOC PRE 181.56 ± 2.14 bpm and POST 179.78 ± 3.4 bpm, and the RPE were TAUchoc PRE 8.33 ± 2.4 AU and POST 9.1 ± 2.1 AU; CHOC PRE 8.11 ± 4.94 AU and POST 8.78 ± 2.78 AU). Conclusion: Taurine supplementation did not improve aerobic parameters, but was effective in increasing taurine plasma levels and decreasing oxidative stress markers, which suggests that taurine may prevent oxidative stress in triathletes.


Journal of Cellular Physiology | 2018

Excessive training induces molecular signs of pathologic cardiac hypertrophy: DA ROCHA et al.

Alisson L. da Rocha; Giovana R. Teixeira; Ana P. Pinto; Gustavo P. Morais; Luciana da C. Oliveira; Larissa Gaioto de Vicente; Lilian Marques Silva; José Rodrigo Pauli; Dennys E. Cintra; Eduardo R. Ropelle; Leandro Pereira de Moura; Rania A. Mekary; Ellen Cristini de Freitas; Adelino Sanchez Ramos da Silva

Chronic exercise induces cardiac remodeling that promotes left ventricular hypertrophy and cardiac functional improvement, which are mediated by the mammalian or the mechanistic target of rapamycin (mTOR) as well as by the androgen and glucocorticoid receptors (GRs). However, pathological conditions (i.e., chronic heart failure, hypertension, and aortic stenosis, etc.) also induce cardiac hypertrophy, but with detrimental function, high levels of proinflammatory cytokines and myostatin, elevated fibrosis, reduced adenosine monophosphate‐activated protein kinase (AMPK) activation, and fetal gene reactivation. Furthermore, recent studies have evidenced that excessive training induced an inflammatory status in the serum, muscle, hypothalamus, and liver, suggesting a pathological condition that could also be detrimental to cardiac tissue. Here, we verified the effects of three running overtraining (OT) models on the molecular parameters related to physiological and pathological cardiac hypertrophy. C57BL/6 mice performed three different OT protocols and were evaluated for molecular parameters related to physiological and pathological cardiac hypertrophy, including immunoblotting, reverse transcription polymerase chain reaction, histology, and immunohistochemistry analyses. In summary, the three OT protocols induced left ventricle (LV) hypertrophy with signs of cardiac fibrosis and negative morphological adaptations. These maladaptations were accompanied by reductions in AMPKalpha (Thr172) phosphorylation, androgen receptor, and GR expressions, as well as by an increase in interleukin‐6 expression. Specifically, the downhill running–based OT model reduced the content of some proteins related to the mTOR signaling pathway and upregulated the β‐isoform of myosin heavy‐chain gene expression, presenting signs of LV pathological hypertrophy development.

Collaboration


Dive into the Ellen Cristini de Freitas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Rodrigo Pauli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Bruno Pereira

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Dennys E. Cintra

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo R. Ropelle

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana P. Pinto

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge