Ellen Denayer
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ellen Denayer.
Nature Genetics | 2007
Hilde Brems; Magdalena Chmara; Mourad Sahbatou; Ellen Denayer; Koji Taniguchi; Reiko Kato; R. Somers; Ludwine Messiaen; Sofie De Schepper; Jean Pierre Fryns; Jan Cools; Peter Marynen; Gilles Thomas; Akihiko Yoshimura; Eric Legius
We report germline loss-of-function mutations in SPRED1 in a newly identified autosomal dominant human disorder. SPRED1 is a member of the SPROUTY/SPRED family of proteins that act as negative regulators of RAS->RAF interaction and mitogen-activated protein kinase (MAPK) signaling. The clinical features of the reported disorder resemble those of neurofibromatosis type 1 and consist of multiple café-au-lait spots, axillary freckling and macrocephaly. Melanocytes from a café-au-lait spot showed, in addition to the germline SPRED1 mutation, an acquired somatic mutation in the wild-type SPRED1 allele, indicating that complete SPRED1 inactivation is needed to generate a café-au-lait spot in this syndrome. This disorder is yet another member of the recently characterized group of phenotypically overlapping syndromes caused by mutations in the genes encoding key components of the RAS-MAPK pathway. To our knowledge, this is the first report of mutations in the SPRY (SPROUTY)/SPRED family of genes in human disease.
JAMA | 2009
Ludwine Messiaen; Suxia Yao; Hilde Brems; Tom Callens; Achara Sathienkijkanchai; Ellen Denayer; Emily Spencer; Pamela Arn; Dusica Babovic-Vuksanovic; Carolyn Bay; Gary B. Bobele; Bruce H. Cohen; Luis F. Escobar; Deborah L. Eunpu; Theresa A. Grebe; Robert M. Greenstein; Rachel Hachen; Mira Irons; David Kronn; Edmond G. Lemire; Kathleen A. Leppig; Cynthia Lim; Marie McDonald; Vinodh Narayanan; Amy Pearn; Robert Pedersen; Berkley R. Powell; Lawrence R. Shapiro; David L. Skidmore; David Tegay
CONTEXT Autosomal dominant inactivating sprouty-related EVH1 domain-containing protein 1 (SPRED1) mutations have recently been described in individuals presenting mainly with café au lait macules (CALMs), axillary freckling, and macrocephaly. The extent of the clinical spectrum of this new disorder needs further delineation. OBJECTIVE To determine the frequency, mutational spectrum, and phenotype of neurofibromatosis type 1-like syndrome (NFLS) in a large cohort of patients. DESIGN, SETTING, AND PARTICIPANTS In a cross-sectional study, 23 unrelated probands carrying a SPRED1 mutation identified through clinical testing participated with their families in a genotype-phenotype study (2007-2008). In a second cross-sectional study, 1318 unrelated anonymous samples collected in 2003-2007 from patients with a broad range of signs typically found in neurofibromatosis type 1 (NF1) but no detectable NF1 germline mutation underwent SPRED1 mutation analysis. MAIN OUTCOME MEASURES Comparison of aggregated clinical features in patients with or without a SPRED1 or NF1 mutation. Functional assays were used to evaluate the pathogenicity of missense mutations. RESULTS Among 42 SPRED1-positive individuals from the clinical cohort, 20 (48%; 95% confidence interval [CI], 32%-64%) fulfilled National Institutes of Health (NIH) NF1 diagnostic criteria based on the presence of more than 5 CALMs with or without freckling or an NF1-compatible family history. None of the 42 SPRED1-positive individuals (0%; 95% CI, 0%-7%) had discrete cutaneous or plexiform neurofibromas, typical NF1 osseous lesions, or symptomatic optic pathway gliomas. In the anonymous cohort of 1318 individuals, 34 different SPRED1 mutations in 43 probands were identified: 27 pathogenic mutations in 34 probands and 7 probable nonpathogenic missense mutations in 9 probands. Of 94 probands with familial CALMs with or without freckling and no other NF1 features, 69 (73%; 95% CI, 63%-80%) had an NF1 mutation and 18 (19%; 95% CI, 12%-29%) had a pathogenic SPRED1 mutation. In the anonymous cohort, 1.9% (95% CI, 1.2%-2.9%) of individuals with the clinical diagnosis of NF1 according to the NIH criteria had NFLS. CONCLUSIONS A high SPRED1 mutation detection rate was found in NF1 mutation-negative families with an autosomal dominant phenotype of CALMs with or without freckling and no other NF1 features. Among individuals in this study, NFLS was not associated with the peripheral and central nervous system tumors seen in NF1.
The Journal of Neuroscience | 2008
Ellen Denayer; Tariq Ahmed; Hilde Brems; Geeske M. van Woerden; Nils Zuiderveen Borgesius; Zsuzsanna Callaerts-Vegh; Akihiko Yoshimura; Dieter Hartmann; Ype Elgersma; Rudi D'Hooge; Eric Legius; Detlef Balschun
Germline mutations in SPRED1, a negative regulator of Ras, have been described in a neurofibromatosis type 1 (NF1)-like syndrome (NFLS) that included learning difficulties in some affected individuals. NFLS belongs to the group of phenotypically overlapping neuro-cardio-facial-cutaneous syndromes that are all caused by germ line mutations in genes of the Ras/mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) pathway and that present with some degree of learning difficulties or mental retardation. We investigated hippocampus-dependent learning and memory as well as synaptic plasticity in Spred1−/− mice, an animal model of this newly discovered human syndrome. Spred1−/− mice show decreased learning and memory performance in the Morris water maze and visual-discrimination T-maze, but normal basic neuromotor and sensory abilities. Electrophysiological recordings on brain slices from these animals identified defects in short- and long-term synaptic hippocampal plasticity, including a disequilibrium between long-term potentiation (LTP) and long-term depression in CA1 region. Biochemical analysis, 4 h after LTP induction, demonstrated increased ERK-phosphorylation in Spred1−/− slices compared with those of wild-type littermates. This indicates that deficits in hippocampus-dependent learning and synaptic plasticity induced by SPRED1 deficiency are related to hyperactivation of the Ras/ERK pathway.
Journal of Medical Genetics | 2008
Ellen Denayer; Thomy de Ravel; Eric Legius
RAS proteins play key roles in normal cell growth, malignant transformation and learning and memory. Somatic mutations in RAS genes and several of their upstream and downstream molecules result in different human malignancies. In recent years germline mutations in genes coding for components of the RAS signalling cascade have been recognised in a group of phenotypically overlapping disorders, referred to as the neuro-cardio-facial-cutaneous syndromes. These present with variable degrees of psychomotor delay, cardiac abnormalities, facial dysmorphism, short stature, skin defects and increased cancer risk. These findings point to important roles for this evolutionary conserved pathway not only in oncogenesis, but also in cognition, growth and development. Other constitutional disorders caused by mutated RAS pathway genes point to involvement of the RAS-MAPK pathway in immune modulation and vascular development.
Genes, Chromosomes and Cancer | 2009
Ellen Denayer; Koen Devriendt; Thomy de Ravel; Griet Van Buggenhout; Eric Smeets; Inge François; Yves Sznajer; Margarita Craen; George Leventopoulos; Leon Mutesa; Willy W. Vandecasseye; G Massa; Hülya Kayserili; Raf Sciot; Jean-Pierre Fryns; Eric Legius
Noonan syndrome (NS) is an autosomal dominant disorder caused by mutations in PTPN11, KRAS, SOS1, and RAF1. We performed SOS1, RAF1, BRAF, MEK1, and MEK2 mutation analysis in a cohort of 102 PTPN11‐ and KRAS‐negative NS patients and found pathogenic SOS1 mutations in 10, RAF1 mutations in 4, and BRAF mutations in 2 patients. Three novel SOS1 mutations were found. One was classified as a rare benign variant and the other remains unclassified. We confirm a high prevalence of pulmonic stenosis and ectodermal abnormalities in SOS1‐positive patients. Three patients with SOS1 mutations presented with tumors (embryonal rhabdomyosarcoma, Sertoli cell testis tumor, and granular cell tumors of the skin). One patient with a RAF1 mutation had a lesion suggestive for a giant cell tumor. This is the first report describing different tumor types in NS patients with germ line SOS1 mutations.
European Journal of Pediatrics | 2007
Ellen Denayer; Eric Legius
The RAS-MAPKinase pathway is a signal transduction cascade which has been studied extensively during the last decades for its role in human oncogenesis. Activation of this cascade is controlled by cycling of the RAS protein between an inactive and an active state and by phosphorylation of downstream proteins. The signalling cascade regulates cell proliferation, differentiation and survival. Disturbed RAS signalling in malignancies is caused by acquired somatic mutations in RAS genes or other components of this pathway. Recently, germline mutations in genes coding for different components of the RAS signalling cascade have been recognized as the cause of several phenotypically overlapping disorders, recently referred to as the neuro-cardio-facial-cutaneous syndromes. Neurofibromatosis type 1, Noonan, LEOPARD, Costello and cardiofaciocutaneous syndromes all present with variable degrees of psychomotor delay, congenital heart defects, facial dysmorphism, short stature, skin abnormalities and a predisposition for malignancy. These findings point to important roles for this evolutionary conserved pathway in oncogenesis, development, cognition and growth. Conclusion: it has become obvious in recent years that the neuro-cardio-facial-cutaneous syndromes all share a common genetic and pathophysiologic basis. Dysregulation of the RAS-MAPKinase pathway is caused by germline mutations in genes involved in this pathway. Undoubtedly more genes causing related syndromes will be discovered in the near future since there are still a substantial number of genes in the pathway that are not yet associated with a known syndrome.
Human Mutation | 2011
Ellen Denayer; Magdalena Chmara; Hilde Brems; Anneke Kievit; Yolande van Bever; Ans van den Ouweland; Rick van Minkelen; Arja de Goede-Bolder; Rianne Oostenbrink; Phillis Lakeman; Eline Beert; Takuma Ishizaki; Tomoaki Mori; Kathelijn Keymolen; Jenneke van den Ende; Elisabeth Mangold; Sirkku Peltonen; Glen Brice; Julia Rankin; Karin Y. van Spaendonck-Zwarts; Akihiko Yoshimura; Eric Legius
Legius syndrome presents as an autosomal dominant condition characterized by café‐au‐lait macules with or without freckling and sometimes a Noonan‐like appearance and/or learning difficulties. It is caused by germline loss‐of‐function SPRED1 mutations and is a member of the RAS‐MAPK pathway syndromes. Most mutations result in a truncated protein and only a few inactivating missense mutations have been reported. Since only a limited number of patients has been reported up until now, the full clinical and mutational spectrum is still unknown. We report mutation data and clinical details in fourteen new families with Legius syndrome. Six novel germline mutations are described. The Trp31Cys mutation is a new pathogenic SPRED1 missense mutation. Clinical details in the 14 families confirmed the absence of neurofibromas, and Lisch nodules, and the absence of a high prevalence of central nervous system tumors. We report white matter T2 hyperintensities on brain MRI scans in 2 patients and a potential association between postaxial polydactyly and Legius syndrome.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2011
Ellen Denayer; Mie-Jef Descheemaeker; Douglas R. Stewart; Kathelijn Keymolen; Ellen Plasschaert; Sarah L. Ruppert; Joseph Snow; Audrey Thurm; Lisa Joseph; Jean-Pierre Fryns; Eric Legius
Legius syndrome is a RAS‐MAPK syndrome characterized by pigmentary findings similar to neurofibromatosis type 1 (NF1), but without tumor complications. Learning difficulties and behavioral problems have been reported to be associated with Legius syndrome, but have not been studied systematically. We investigated intelligence and behavior in 15 patients with Legius syndrome and 7 unaffected family members. We report a mean full‐scale IQ of 101.57 in patients with Legius syndrome, which does not differ from the control group. We find a significantly lower Performance IQ in children with Legius syndrome compared to their unaffected family members. Few behavioral problems are present as assessed by the Child Behavior Checklist (CBCL) questionnaire. Our observations suggest that, akin to the milder somatic phenotype, the cognitive phenotype in Legius syndrome is less severe than that of NF1.
BMC Medical Genetics | 2009
Ellen Denayer; Hilde Brems; Paul De Cock; Gareth Evans; Frank Van Calenbergh; Naomi Bowers; Raphael Sciot; Maria Debiec-Rychter; Joris Vermeesch; Jean-Pierre Fryns; Eric Legius
BackgroundRing chromosome 22 is a rare human constitutional cytogenetic abnormality. Clinical features of neurofibromatosis type 1 and 2 as well as different tumour types have been reported in patients with ring chromosome 22. The pathogenesis of these tumours is not always clear yet.MethodsWe report on a female patient with a ring chromosome 22 presenting with severe mental retardation, autistic behaviour, café-au-lait macules and facial dysmorphism. Peripheral blood lymphocytes were karyotyped and array CGH was performed on extracted DNA. At the age of 20 years she was diagnosed with a unilateral vestibular schwannoma. Tumour cells were analyzed by karyotyping, array CGH and NF2 mutation analysis.ResultsKaryotype on peripheral blood lymphocytes revealed a ring chromosome 22 in all analyzed cells. A 1 Mb array CGH experiment on peripheral blood DNA showed a deletion of 5 terminal clones on the long arm of chromosome 22. Genetic analysis of vestibular schwannoma tissue revealed loss of the ring chromosome 22 and a somatic second hit in the NF2 gene on the remaining chromosome 22.ConclusionWe conclude that tumours can arise by the combination of loss of the ring chromosome and a pathogenic NF2 mutation on the remaining chromosome 22 in patients with ring chromosome 22. Our findings indicate that patients with a ring 22 should be monitored for NF2-related tumours starting in adolescence.
European Journal of Human Genetics | 2012
Dusica Babovic-Vuksanovic; Ludwine Messiaen; Christoph Nagel; Hilde Brems; Bernd W. Scheithauer; Ellen Denayer; Rong Mao; Ralf Sciot; Karen M. Janowski; Martin U. Schuhmann; Kathleen Claes; Eline Beert; James A. Garrity; Robert J. Spinner; Anat Stemmer-Rachamimov; Ralitza Gavrilova; Frank Van Calenbergh; Victor F. Mautner; Eric Legius
Four unrelated patients having an unusual clinical phenotype, including multiple peripheral nerve sheath tumors, are reported. Their clinical features were not typical of any known familial tumor syndrome. The patients had multiple painful neurofibromas, including bilateral orbital plexiform neurofibromas, and spinal as well as mucosal neurofibromas. In addition, they exhibited a marfanoid habitus, shared similar facial features, and had enlarged corneal nerves as well as neuronal migration defects. Comprehensive NF1, NF2 and SMARCB1 mutation analyses revealed no mutation in blood lymphocytes and in schwann cells cultured from plexiform neurofibromas. Furthermore, no mutations in RET, PRKAR1A, PTEN and other RAS-pathway genes were found in blood leukocytes. Collectively, the clinical and pathological findings in these four cases fit no known syndrome and likely represent a new disorder.