Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen L. Dally is active.

Publication


Featured researches published by Ellen L. Dally.


International Journal of Systematic and Evolutionary Microbiology | 1998

Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16s rRNA and ribosomal protein gene operon sequences

R. Jomantiene; Robert E. Davis; John L. Maas; Ellen L. Dally

Strawberry plants exhibiting symptoms of stunting and abnormally small leaves were observed in production fields in central Florida, USA. Since the symptoms were suggestive of phytoplasma infection, plants were assayed for presence of phytoplasma by PCR amplification of 16S rDNA and ribosomal protein (rp) gene sequences. Amplification of phytoplasma-specific DNA sequences by PCR indicated infection of the diseased strawberry plants by phytoplasmas. RFLP analyses of amplified 16S rDNA revealed that the plants were infected by two mutually distinct phytoplasmas that differed from strawberry green petal phytoplasma (group 16Srl-C). Both phytoplasmas were members of 16S rRNA gene group I (16Srl). Based on RFLP analysis of amplified 16S rDNA and rp gene sequences, one was classified in group 16Srl subgroup I and new rp subgroup 16Srl-l(rp); its 16S rRNA-rp subgroup was designated 16Srl-K(rr-rp). The second phytoplasma represented a previously undescribed subgroup, designated K, in 16S rRNA group I but belonged to rp subgroup 16Srl-J(rp); this phytoplasmas 16S rRNA-rp subgroup was designated 16Srl-J(rr-rp). Results of RFLP analyses agreed with putative restriction site maps based on nucleotide sequences determined for the amplified 16S rDNAs and rp gene operon DNAs. Further evidence indicated that the 16Srl-K(rr-rp) strawberry phytoplasma, Mexican periwinkle virescence phytoplasma and stolbur phytoplasma shared sequence homologies that enabled amplification of DNA from all three by PCR using primers previously designed as stolbur-specific.


Plant Disease | 2001

Revised Subgroup Classification of Group 16SrV Phytoplasmas and Placement of Flavescence Dorée-Associated Phytoplasmas in Two Distinct Subgroups

Robert E. Davis; Ellen L. Dally

The subgroup classification of phytoplasmas in 16S rRNA group 16SrV (elm yellows phytoplasma group) was revised and extended on the basis of enzymatic restriction fragment length polymorphism (RFLP) analysis of ribosomal (r) DNA and analysis of putative restriction sites in nucleotide sequences. A 1.85 kbp fragment of the rRNA operon from flavescence dorée (FD) phytoplasma strain FD70 from France was amplified and cloned, and its nucleotide sequence determined (GenBank acc. no. AF176319). Placement of FD70 in subgroup V-C was verified by analysis of amplified DNA and of the cloned sequence. Hemp dogbane phytoplasma HD1 (AF122912), a member of subgroup V-C, was distinguished from other subgroup V-C phytoplasmas by putative restriction site differences in the 16S-23S rRNA spacer region. A previously published FD phytoplasma sequence (GenBank accession no. X76560) differed from FD70 sequence AF176319 by at least eight nucleotide substitutions and differences in putative restriction sites. The X76560 FD phytoplasma was classified in a new subgroup (V-D). Based on analyses of 16S rDNA GenBank sequence Y16395, Rubus stunt phytoplasma was classified in new subgroup V-E. The revised classification was supported by sequence similarities, group 16SrV-characteristic sequences, and a phylogenetic tree constructed on the basis of 16S rDNA sequences.


DNA and Cell Biology | 2003

Folate Biosynthesis Pseudogenes, ΨfolP and ΨfolK, and an O-Sialoglycoprotein Endopeptidase Gene Homolog in the Phytoplasma Genome

Robert E. Davis; R. Jomantiene; Yan Zhao; Ellen L. Dally

Phytoplasmas are wall-less phytopathogenic prokaryotes of small genome sizes that are obligate parasites of insect vectors and plant hosts. We have cloned a clover phyllody (CPh) phytoplasma DNA locus containing five potential coding sequences. Two were identified as pseudogenes (PsifolP and PsifolK) homologous to folP and folK genes, which encode dihydropteroate synthase (DHPS) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), respectively, in other bacteria. Evolution of the phytoplasma presumably involved loss of functions through the formation of these and other pseudogenes during adaptation to obligate parasitism. The findings suggest that the phytoplasma lacks capacity for de novo folate biosynthesis and possesses a transport system for absorption of preformed folate from host cells. The PsifolP-PsifolK region was flanked by three open reading frames (ORFs) encoding a DegV family protein, a hypothetical protein with a P60-like lipoprotein domain homologous with the P60-like Mycoplasma hominis protein, and a glycoprotease (Gcp) protein that possibly functions as a host adaptation or virulence factor.


International Journal of Pest Management | 2000

Detection and identification of the maize bushy stunt phytoplasma in corn plants in Brazil using PCR and RFLP

Ivan Paulo Bedendo; Robert E. Davis; Ellen L. Dally

Plants of corn (Zea mays L.) exhibiting symptoms of stunting and leaf reddening were assayed for the presence of phytoplasma gene sequences through the use of phytoplasma rRNA and ribosomal protein gene and maize bushy stunt (MBS) phytoplasma-specific oligonucleotide primers in polymerase chain reactions (PCR). Polymorphisms in 16S rDNA amplified from diseased plants were those characteristic of phytoplasmas classified in the16S rRNA gene group 16SrI, subgroup IB, of which MBS phytoplasma is a member. Amplification of ribosomal protein (rp) gene sequences in PCR primed by phytoplasma-specific primers confirmed presence of a phytoplasma in the diseased plants. Restriction fragment length polymorphism (RFLP) patterns of the amplified phytoplasma rp gene sequences were similar or identical to those observed for a known strain of MBS phytoplasma. In separate PCR, an MBS-specific oligonucleotide pair primed amplification of a MBS-characteristic DNA from templates derived from the diseased corn. Our data provide the first firm evidence for the presence of maize bushy stunt phytoplasma in corn in Brazil.


Plant Disease | 2000

Single and Mixed Phytoplasma Infections in Phyllody- and Dwarf-Diseased Clover Plants in Lithuania

J. Staniulis; Robert E. Davis; R. Jomantiene; Audrone Kalvelyte; Ellen L. Dally

Naturally diseased plants of clover (Trifolium spp.) exhibiting symptoms of clover phyllody (virescence and phyllody of flowers) or of clover dwarf (abnormally small leaves, shortened internodes, proliferation of shoots, and dwarf growth habit) were observed in fields in Lithuania. Phytoplasma group-specific polymerase chain reactions (PCRs) and restriction fragment length polymorphism (RFLP) analysis of 16S rDNA revealed that the plants were infected by two mutually distinct phytoplasmas. Clover phyllody-diseased plants were infected by a subgroup 16SrI-C (subgroup I-C) phytoplasma (CPh-L) related to clover phyllody (CPh-C) phytoplasma in Canada. Clover dwarf-diseased plants were infected by both CPh-L and a phytoplasma (CYE-L) related to clover yellow edge (CYE-C) phytoplasma (subgroup 16SrIII-B = III-B) in Canada. A 1.8-kbp fragment of rRNA operon from CYE-L was amplified, cloned, and sequenced, and putative restriction sites mapped. This sequence shared high similarity (99.7%) with that of CYE-C and exhibited no differences from CYE-C in RFLP patterns of 16S rDNA; therefore, we tentatively classified CYE-L in subgroup 16SrIII-B (type strain, CYE = CYE-C phytoplasma) of the X-disease phytoplasma group. These findings extend the known geographical ranges of subgroup I-C and subgroup III-B taxa to the region of northern Europe including Lithuania and suggest a role of the subgroup III-B phytoplasma in clover dwarf disease.


Plant Disease | 2001

Design of a Polymerase Chain Reaction for Specific Detection of Corn Stunt Spiroplasma

Thereza S. L. Barros; Robert E. Davis; Ellen L. Dally

Corn stunt disease is a major limiting factor in production of corn (Zea mays) in the Americas. To develop a polymerase chain reaction (PCR) assay specific for detection of the causal agent, Spiroplasma kunkelii, PCR primers were designed on the basis of unique regions of the nucleotide sequence of the S. kunkelii spiralin gene. DNA was amplified in PCRs containing template DNAs derived from laboratory strains of S. kunkelii and from naturally diseased corn plants collected in the field. No DNA amplification was observed in PCRs containing template DNAs derived from other Spiroplasma species tested or from healthy corn or corn infected by maize bushy stunt phytoplasma. The availability of a sensitive and specific PCR for detection and identification of S. kunkelii should facilitate studies of the ecology of this pathogen, as well as its influence in the incidence, spread, and severity of corn stunting diseases.


Plant Disease | 2001

Molecular identification and classification of a phytoplasma associated with phyllody of strawberry fruit in Maryland.

R. Jomantiene; John L. Maas; Robert E. Davis; Ellen L. Dally

Several phytoplasmas have been reported to be associated with phyllody of strawberry fruit, including clover yellow edge, clover proliferation, clover phyllody, eastern and western aster yellows, STRAWB2, strawberry multicipita, and Mexican periwinkle virescence phytoplasmas. Plant symptoms in addition to phyllody may include chlorosis, virescence, stunting, or crown proliferation. In this report we describe a new phytoplasma in association with strawberry leafy fruit (SLF) disease in Maryland. Diseased plants exhibited fruit phyllody, floral virescence, leaf chlorosis, and plant stunting. Phytoplasmal 16S rDNA was amplified from SLF diseased plants by using the polymerase chain reaction (PCR) primed by primer pair P1/P7 and was reamplified in nested PCR primed by primer pair R16F2n/R2 (F2n/R2) as previously described (1). These results indicated the presence of a phytoplasma, designated SLF phytoplasma. Identification of SLF phytoplasma was accomplished by restriction fragment length polymorphism (RFLP) analysis of DNA amplified in PCR primed by F2n/R2, using endonuclease enzyme digestion with AluI, HhaI, KpnI, HaeIII, MseI, HpaII, RsaI, and Sau3AI. Phytoplasma classification was done according to the system of Lee et al. (2). RFLP analyses of rDNA amplified in three separate PCRs gave identical patterns. On the basis of collective RFLP patterns of the amplified 16S rDNA, the SLF phytoplasma was classified as a member of group 16SrIII (group III, X-disease phytoplasma group). The HhaI RFLP pattern of SLF 16S rDNA differed from that of the apparently close relative, clover yellow edge (CYE) phytoplasma, and all other phytoplasmas previously described in group III. Based on these results, SLF phytoplasma was classified in a new subgroup, designated subgroup K (III-K), within group III. The 1.2 kbp DNA product of PCR primed by primer pair F2n/R2 was sequenced, and the sequence deposited in GenBank under Accession No. AF 274876. Results from putative restriction site analysis of the sequence were in agreement with the results from actual enzymatic RFLP analysis of rDNA amplified from phylloid strawberry fruit. Although the sequence similarity between the 1.2-kbp fragment from the 16S rDNA of SLF phytoplasma and that of CYE phytoplasma was 99.9%, the Hha1 RFLP pattern of SLF rDNA supports the conclusion that the SLF phytoplasma may be closely related to, but is distinct from, CYE and other strains that are classified in group III. These findings contribute knowledge about the diversity of phytoplasmas affiliated with group III and the diversity of phytoplasmas associated with diseases in strawberry. References: (1) R. Jomantiene et al. Int. J. Syst. Bacteriol. 48:269, 1998. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998.


Florida Entomologist | 1994

Use of a Biotinylated Dna Probe for Detection of the Aster Yellows Mycoplasmalike Organism in Dalbulus maidis and Macrosteles fascifrons (Homoptera: Cicadellidae)

Fernando E. Vega; Robert E. Davis; Ellen L. Dally; Pedro Barbosa; Alexander H. Purcell; Ing-Ming Lee

A DNA probe was used to detect aster yellows mycoplasmalike organism acquisition by the corn leafhopper, Dalbulus maidis (DeLong & Wolcott), an insect that does not transmit aster yellows mycoplasmalike organism, as well as by Macrosteles fascifrons (Stœl), a vector insect. Results show the effectiveness of the probe for pathogen detection in both the non-vector and the vector insect.


Plant Disease | 1999

First Report of Clover Yellow Edge and STRAWB2 Phytoplasmas in Strawberry in Maryland

R. Jomantiene; John L. Maas; Ellen L. Dally; Robert E. Davis

Commercial strawberry (Fragaria × ananassa Duchesne) plants that were either chlorotic and severely stunted or exhibiting fruit phyllody were collected in Maryland. The plants were assessed for phytoplasma infection by nested polymerase chain reactions primed by phytoplasma universal primer pairs R16mF2/R1 and F2n/R2 (2) or P1/P7 (3) and F2n/R2 for amplification of phytoplasma 16S ribosomal (r) DNA (16S rRNA gene) sequences. Phytoplasma-characteristic 1.2-kbp DNA sequences were amplified from all diseased plants. No phytoplasma-characteristic DNAs were amplified from healthy plants. Restriction fragment length polymorphism patterns of rDNA digested with AluI, KpnI, HhaI, HaeIII, HpaII, MseI, RsaI, and Sau3A1 endonucleases indicated that chlorotic and stunted plants were infected by a phytoplasma that belonged to subgroup 16SrIII-B (clover yellow edge [CYE] subgroup) and that the plant exhibiting fruit phyllody was infected by a phytoplasma that belonged to subgroup 16SrI-K (STRAWB2 subgroup). The STRAWB2 phytoplasma was first reported from strawberry plants grown in Florida and characterized as representative of a new subgroup of the aster yellows group, 16SrI (3); this is the first report of this phytoplasma occurring in strawberry outside of Florida. A STRAWB2-infected plant produced phylloid fruits in two consecutive years of observation in the greenhouse; the plant previously had been field-grown in a breeders evaluation plots in Beltsville, MD. The CYE phytoplasma was first experimentally transmitted by leafhopper to commercial strawberry and F. virginiana Duchesne in Ontario Canada (1); this is the first report of natural CYE phytoplasma infection of strawberry in Maryland. CYE phytoplasma-infected plants, representing ≈5% of the total number of plants of one advanced sselection, were located in a breeders evaluation plots in Beltsville. References: (1) L. N. Chiykowski. Can. J. Bot. 54:1171, 1976. (2) D. E. Gunderson and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (3) R. Jomantiene et al. Int. J. Syst. Bacteriol. 48:269, 1998.


Genome Announcements | 2015

Complete Genome Sequence of Spiroplasma kunkelii Strain CR2-3x, Causal Agent of Corn Stunt Disease in Zea mays L.

Robert E. Davis; Jonathan Shao; Ellen L. Dally; Yan Zhao; Gail E. Gasparich; Brady J. Gaynor; John C. Athey; N. A. Harrison; Nicole M. Donofrio

ABSTRACT Spiroplasma kunkelii causes corn stunt disease of Zea mays L. in the Americas. Here, we report the nucleotide sequence of the 1,463,926-bp circular chromosome and four plasmids of strain CR2-3x. This information will facilitate studies of Spiroplasma pathogenicity and evolutionary adaptations to transkingdom parasitism in plants and insect vectors.

Collaboration


Dive into the Ellen L. Dally's collaboration.

Top Co-Authors

Avatar

Robert E. Davis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Robert E. Davis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

R. Jomantiene

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yan Zhao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ing-Ming Lee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John L. Maas

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Wei Wei

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

I.-M. Lee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jonathan Shao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Postman

National Clonal Germplasm Repository

View shared research outputs
Researchain Logo
Decentralizing Knowledge