Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen L. Robb is active.

Publication


Featured researches published by Ellen L. Robb.


Nature | 2014

Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS

Edward T. Chouchani; Victoria R. Pell; Edoardo Gaude; Dunja Aksentijevic; Stephanie Y. Sundier; Ellen L. Robb; Angela Logan; Sergiy M. Nadtochiy; Emily N. J. Ord; Anthony C. Smith; Filmon Eyassu; Rachel Shirley; Chou-Hui Hu; Anna J Dare; Andrew M. James; Sebastian Rogatti; Richard C. Hartley; Simon Eaton; Ana S.H. Costa; Paul S. Brookes; Sean M. Davidson; Michael R. Duchen; Kourosh Saeb-Parsy; Michael J. Shattock; Alan J. Robinson; Lorraine M. Work; Christian Frezza; Thomas Krieg; Michael P. Murphy

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Longevity & Healthspan | 2014

A midlife crisis for the mitochondrial free radical theory of aging

Jeffrey A. Stuart; Lucas A. Maddalena; Max Merilovich; Ellen L. Robb

Since its inception more than four decades ago, the Mitochondrial Free Radical Theory of Aging (MFRTA) has served as a touchstone for research into the biology of aging. The MFRTA suggests that oxidative damage to cellular macromolecules caused by reactive oxygen species (ROS) originating from mitochondria accumulates in cells over an animal’s lifespan and eventually leads to the dysfunction and failure that characterizes aging. A central prediction of the theory is that the ability to ameliorate or slow this process should be associated with a slowed rate of aging and thus increased lifespan. A vast pool of data bearing on this idea has now been published. ROS production, ROS neutralization and macromolecule repair have all been extensively studied in the context of longevity. We review experimental evidence from comparisons between naturally long- or short-lived animal species, from calorie restricted animals, and from genetically modified animals and weigh the strength of results supporting the MFRTA. Viewed as a whole, the data accumulated from these studies have too often failed to support the theory. Excellent, well controlled studies from the past decade in particular have isolated ROS as an experimental variable and have shown no relationship between its production or neutralization and aging or longevity. Instead, a role for mitochondrial ROS as intracellular messengers involved in the regulation of some basic cellular processes, such as proliferation, differentiation and death, has emerged. If mitochondrial ROS are involved in the aging process, it seems very likely it will be via highly specific and regulated cellular processes and not through indiscriminate oxidative damage to macromolecules.


Mechanisms of Ageing and Development | 2010

Mitochondrial redox metabolism: aging, longevity and dietary effects.

Melissa M. Page; Ellen L. Robb; Kurtis D. Salway; Jeffrey A. Stuart

Mitochondrial redox metabolism has long been considered to play important roles in mammalian aging and the development of age-related pathologies in the major oxidative organs. Both genetic and dietary manipulations of mitochondrial redox metabolism have been associated with the extension of lifespan. Here we provide a broad overview of the circumstantial evidence showing associations between mitochondrial reactive oxygen species (ROS) metabolism, aging and longevity. We address most aspects of mitochondrial ROS metabolism, from superoxide production, to ROS detoxification and the repair/removal of ROS-mediated macromolecular damage. Finally, we discuss the effects of dietary manipulations (e.g. caloric restriction, methionine restriction), dietary deficiencies (e.g. folate) and dietary supplementation (e.g. resveratrol) on mitochondrial ROS metabolism and lifespan.


Free Radical Biology and Medicine | 2011

Resveratrol interacts with estrogen receptor-β to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase

Ellen L. Robb; Jeffrey A. Stuart

trans-Resveratrol (RES) is one of a number of dietary polyphenols that have been reported to beneficially affect human physiology. Although numerous studies have attributed this to direct interactions between RES and histone deacetylases, recently the reliability of these results has been questioned. We have shown that the mitochondrial superoxide dismutase (MnSOD) is substantially upregulated in RES-treated cells. Here we explore the mechanisms underlying this, showing that two of RESs more interesting effects, inhibition of replication and enhancement of stress resistance, are mediated by MnSOD upregulation in three cell lines: MRC5 human lung fibroblasts, C2C12 mouse myoblasts, and SHSY5Y human neuroblastoma cells. When small interfering RNA was used to prevent induction of MnSOD expression, the effects of RES on population doubling time of cells in culture, and resistance to cell death after exposure to hydrogen peroxide or paraquat, were abolished. Interestingly, the RES-induced upregulation of MnSOD levels could be prevented by the estrogen receptor antagonist ICI 182780. RESs effects also could be reproduced using estradiol or the estrogen receptor-β agonist diarylpropionitrile, but not using the estrogen receptor-α agonist propylpyrazole triol. Thus, we suggest that RES interacts with estrogen receptor-β to induce the upregulation of MnSOD, which affects cell cycle progression and stress resistance. These results have important implications for our understanding of RESs biological activities and potential applications to human health.


Molecules | 2010

trans-Resveratrol as A Neuroprotectant

Ellen L. Robb; Jeffrey A. Stuart

Epidemiological evidence indicates that nutritionally-derived polyphenols such as resveratrol (RES) have neuroprotective properties. Administration of RES to culture media protects a wide variety of neuronal cell types from stress-induced death. Dietary supplementation of RES can ameliorate neuronal damage and death resulting from both acute and chronic stresses in rodents. The specific molecular mechanisms by which RES acts at the cellular level remain incompletely understood. However, many experimental data indicate that RES reduces or prevents the occurrence of oxidative damage. Here we discuss possible mechanisms by which RES might exert protection against oxidative damage and cell death. Evidence suggesting that RES’s chemical antioxidant potential is not sufficient explanation for its effects is discussed. Putative biological activities, including interactions with estrogen receptors and sirtuins are critically discussed. We provide a synthesis of how RES’s phytoestrogenic properties might mediate the neuronal stress resistance underlying its observed neuroprotective properties.


Cell Metabolism | 2016

Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry

Angela Logan; Victoria R. Pell; Karl J. Shaffer; Cameron Evans; Nathan J. Stanley; Ellen L. Robb; Tracy A. Prime; Edward T. Chouchani; Helena M. Cochemé; Ian M. Fearnley; Sara Vidoni; Andrew M. James; Carolyn M. Porteous; Linda Partridge; Thomas Krieg; Robin A. J. Smith; Michael P. Murphy

Summary The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.


Free Radical Biology and Medicine | 2015

Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat

Ellen L. Robb; Justyna M. Gawel; Dunja Aksentijevic; Helena M. Cochemé; Tessa S. Stewart; Maria M. Shchepinova; He Qiang; Tracy A. Prime; Thomas P. Bright; Andrew M. James; Michael J. Shattock; Hans Martin Senn; Richard C. Hartley; Michael P. Murphy

Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.


Current Aging Science | 2009

Mitochondria, Cellular Stress Resistance, Somatic Cell Depletion and Lifespan

Ellen L. Robb; Melissa M. Page; Jeffrey A. Stuart

The causes of aging and determinants of maximum lifespan in animal species are multifaceted and complex. However, a wealth of experimental data suggests that mitochondria are involved both in the aging process and in regulating lifespan. Here we outline a somatic cell depletion (SCD) model to account for correlations between: (1) mitochondrial reactive oxygen species and lifespan; (2) mitochondrial antioxidant enzymes and lifespan; (3) mitochondrial DNA mutation and lifespan and (4) cellular stress resistance and lifespan. We examine the available data from within the framework of the SCD model, in which mitochondrial dysfunction leading to cell death and gradual loss of essential somatic cells eventually contributes to the decline in physiological performance that limits lifespan. This model is useful in explaining many of the mitochondrial manipulations that alter maximum lifespan in a variety of animal species; however, there are a number of caveats and critical experiments outstanding, and these are outlined in this review.


Free Radical Biology and Medicine | 2015

A mitochondria-targeted derivative of ascorbate: MitoC.

Peter G. Finichiu; David S. Larsen; Cameron Evans; Lesley Larsen; Thomas P. Bright; Ellen L. Robb; Jan Trnka; Tracy A. Prime; Andrew M. James; Robin A. J. Smith; Michael P. Murphy

Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.


Free Radical Biology and Medicine | 2009

Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism.

Melissa M. Page; Adam B. Salmon; Scott F. Leiser; Ellen L. Robb; Melanie F. Brown; Richard A. Miller; Jeffrey A. Stuart

Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.

Collaboration


Dive into the Ellen L. Robb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy A. Prime

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Logan

MRC Mitochondrial Biology Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge