Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen Raber is active.

Publication


Featured researches published by Ellen Raber.


International Journal of Environmental Health Research | 2001

Decontamination issues for chemical and biological warfare agents: how clean is clean enough?

Ellen Raber; Alfred L. Jin; Kathleen Noonan; Ray McGuire; Robert D. Kirvel

The objective of this assessment is to determine what level of cleanup will be required to meet regulatory and stakeholder needs in the case of a chemical and/or biological incident at a civilian facility. A literature review for selected, potential chemical and biological warfare agents shows that dose information is often lacking or controversial. Environmental regulatory limits or other industrial health guidelines that could be used to help establish cleanup concentration levels for such agents are generally unavailable or not applicable for a public setting. Although dose information, cleanup criteria, and decontamination protocols all present challenges to effective planning, several decontamination approaches are available. Such approaches should be combined with risk-informed decision making to establish reasonable cleanup goals for protecting health, property, and resources. Key issues during a risk assessment are to determine exactly what constitutes a safety hazard and whether decontamination is necessary or not for a particular scenario. An important conclusion is that cleanup criteria are site dependent and stakeholder specific. The results of a modeling exercise for two outdoor scenarios are presented to reinforce this conclusion. Public perception of risk to health, public acceptance of recommendations based on scientific criteria, political support, time constraints, and economic concerns must all be addressed in the context of a specific scenario to yield effective and acceptable decontamination.


Earth and Planetary Science Letters | 1983

Fission track dating of kimberlitic zircons

Stephen E. Haggerty; Ellen Raber; Charles W. Naeser

Abstract The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206 Pb and 238 U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0–1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.


Journal of Hazardous Materials | 2011

Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

Adam H. Love; Christopher G. Bailey; M.Leslie Hanna; Saphon Hok; Alex K. Vu; Dennis Reutter; Ellen Raber

Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.


Applied and Environmental Microbiology | 2011

Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples

Sonia E. Létant; Gloria A. Murphy; Teneile Alfaro; Julie R. Avila; Staci R. Kane; Ellen Raber; Thomas M. Bunt; Sanjiv Shah

ABSTRACT In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.


International Journal of Environmental Health Research | 2004

How clean is clean enough? Recent developments in response to threats posed by chemical and biological warfare agents.

Ellen Raber; Tina M. Carlsen; Karen J. Folks; Robert D. Kirvel; Jeffrey I. Daniels; Kenneth T. Bogen

Recent terrorist events underscore the urgent need to develop a comprehensive set of health-protective cleanup standards and effective decontamination technologies for use in the restoration of civilian facilities. Accurate scientific information remains limited in the area of biological warfare agents. However, new guidelines and calculated cleanup values are emerging for initial re-entry and long-term reoccupation following use of chemical warfare agents. This article addresses airborne, soil, and surface exposures following release of G-type chemical warfare agents and VX. Cleanup goals should be tailored to the type of population that may be exposed, potential exposure times, and other scenario-specific considerations. Three different airborne concentrations are proposed for cleanup of public sector facilities. One value is recommended for initial re-entry; a more conservative value is recommended for long-term monitoring and increased public confidence; and a third, even more conservative concentration represents essentially a no-effect level for round-the-clock airborne exposure. Health-based cleanup levels are provided for contaminated residential and industrial soil. Results are presented on the outcome of a preliminary risk assessment to determine safe surface levels (e.g., walls, floors, and handrails) for cleanup after exposure to the G agents and VX. Because specific cleanup criteria for most biological warfare agents remain problematic, recommendations are made for filling the knowledge gaps.


Journal of Microbiological Methods | 2010

Most-Probable-Number Rapid Viability PCR method to detect viable spores of Bacillus anthracis in swab samples

Sonia E. Létant; Staci R. Kane; Gloria A. Murphy; Teneile Alfaro; Lisa Hodges; Laura J. Rose; Ellen Raber

A comparison of Most-Probable-Number Rapid Viability (MPN RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs from a multi-center validation study was performed. The purpose of the study was to compare environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were typically within 1-log of the values from a plate count method for all three levels of spores tested (3.1x10(4), 400, and 40 spores sampled from surfaces with swabs) even in the presence of debris. The MPN method tended to overestimate the expected result, especially at lower spore levels. Blind negative samples were correctly identified using both methods showing a lack of cross contamination. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols, enhancing its utility for characterization and clearance following a biothreat agent release.


Applied and Environmental Microbiology | 2010

Decontamination Options for Bacillus anthracis-Contaminated Drinking Water Determined from Spore Surrogate Studies

Ellen Raber; Alison Burklund

ABSTRACT Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus), (ii) spore concentration in suspension (102 and 106 spores/ml), (iii) chemical characteristics of the decontaminant (sodium dichloro-S-triazinetrione dihydrate [Dichlor], hydrogen peroxide, potassium peroxymonosulfate [Oxone], sodium hypochlorite, and VirkonS), (iv) decontaminant concentration (0.01% to 5%), and (v) exposure time to decontaminant (10 min to 1 h). Results from 138 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5% and Dichlor or sodium hypochlorite at a concentration of 2% were highly effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlors desirable characteristics of high oxidation potential, high level of free chlorine, and a more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting the EPA biocide standard of greater than a 6-log kill after a 10-min exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS and Oxone were less effective as decontaminants than other options evaluated in this study and did not meet the EPAs efficacy standard for a biocide, although they were found to be as effective for concentrations of 102 spores/ml. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.


Risk Analysis | 2002

Chemical and biological agent incident response and decision process for civilian and public sector facilities

Ellen Raber; Joy M. Hirabayashi; Saverio P. Mancieri; Alfred L. Jin; Karen J. Folks; Tina M. Carlsen; Pete Estacio

In the event of a terrorist attack or catastrophic release involving potential chemical and/or biological warfare agents, decisionmakers will need to make timely and informed choices about whether, or how, to respond. The objective of this article is to provide a decision framework to specify initial and follow-up actions, including possible decontamination, and to address long-term health and environmental issues. This decision framework consists of four phases, beginning with the identification of an incident and ending with verification that cleanup and remediation criteria have been met. The flowchart takes into account both differences and similarities among potential agents or toxins at key points in the decision-making process. Risk evaluation and communication of information to the public must be done throughout the process to ensure a successful effort.


Biosecurity and Bioterrorism-biodefense Strategy Practice and Science | 2012

Decontamination after a release of B. anthracis spores.

Chris G Campbell; Robert D. Kirvel; Adam H. Love; Christopher G. Bailey; Robin Miles; Jerry Schweickert; Mark Sutton; Ellen Raber

Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores.


Biosecurity and Bioterrorism-biodefense Strategy Practice and Science | 2011

The National Framework and Consequence Management Guidance Following a Biological Attack

Ellen Raber; Wilthea Hibbard; Robert Greenwalt

Consequence management following a release of aerosolized Bacillus anthracis spores requires a high level of technical understanding and direction. National policies and regulations address the topics of preparedness goals and organizational structure, but they do not tell responders how to perform remediation. Essential considerations include determining what must be cleaned, evaluating health risks, ascertaining the priority of cleanup, and selecting appropriate decontamination technologies to meet consensus and risk-derived clearance goals. This article highlights key features of a national-level framework that has been developed to guide a risk-based decision process and inform technical personnel of the best practices to follow during each activity leading to the restoration of functions at affected facilities or areas. The framework and associated guidance follows the scheme of 6 phases for response and recovery arrived at through interagency consensus and approval. Each phase is elaborated in a series of detailed decision flowcharts identifying key questions that must be addressed and answered from the time that first indications of a credible biological attack are received to final reoccupancy of affected areas and a return to normal daily functions.

Collaboration


Dive into the Ellen Raber's collaboration.

Top Co-Authors

Avatar

Robert D. Kirvel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam H. Love

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Staci R. Kane

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tina M. Carlsen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gloria A. Murphy

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Tucker

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Sonia E. Létant

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Teneile Alfaro

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alfred L. Jin

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Annetta P. Watson

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge