Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen V. Rothenberg is active.

Publication


Featured researches published by Ellen V. Rothenberg.


Nature Reviews Immunology | 2008

Launching the T-cell-lineage developmental programme

Ellen V. Rothenberg; Jonathan E. Moore; Mary A. Yui

Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination.


Science | 2010

An Early T Cell Lineage Commitment Checkpoint Dependent on the Transcription Factor Bcl11b

Long Li; Mark Leid; Ellen V. Rothenberg

One Two T T cells develop in the thymus, where they proceed through several developmental stages, losing alternative lineage potential as they progress. The molecular regulation of this developmental process, however, is not fully understood (see the Perspective by Di Santo). P. Li et al. (p. 85, published online 10 June), L. Li et al. (p. 89), and Ikawa et al. (p. 93) now identify expression of the zinc finger transcription factor Bcl11b as the earliest checkpoint in T cell development in mice. Genetic deletion of Bcl11b in developing T cells inhibited commitment to the T cell lineage. Under conditions that should have stimulated T lineage differentiation, Bcl11b-deficient T cell progenitors failed to up-regulate genes associated with lineage-committed T cells and maintained stem cell– and progenitor cell–associated gene expression. In both developing and committed T cells, loss of Bcl11b resulted in the generation of cells that resembled natural killer (NK) cells in both phenotype and function. These NK-like cells could be expanded easily in vitro and possessed antitumor cytotoxicity, but they did not exhibit cytotoxicity against normal cells and were not tumorigenic. Because T cells are much easier to obtain from human patients than NK cells, deletion of Bcl11b in T cells may thus provide a source of easy-to-grow NK cells for cell-based antitumor therapies. A transcription factor is essential for maintenance of T cell identity. The identities of the regulators that mediate commitment of hematopoietic precursors to the T lymphocyte lineage have been unknown. The last stage of T lineage commitment in vivo involves mechanisms to suppress natural killer cell potential, to suppress myeloid and dendritic cell potential, and to silence the stem cell or progenitor cell regulatory functions that initially provide T cell receptor–independent self-renewal capability. The zinc finger transcription factor Bcl11b is T cell–specific in expression among hematopoietic cell types and is first expressed in precursors immediately before T lineage commitment. We found that Bcl11b is necessary for T lineage commitment in mice and is specifically required both to repress natural killer cell–associated genes and to down-regulate a battery of stem cell or progenitor cell genes at the pivotal stage of commitment.


Immunity | 2003

GATA-3 Expression Is Controlled by TCR Signals and Regulates CD4/CD8 Differentiation

Gabriela Hernandez-Hoyos; Michele K. Anderson; Chi Wang; Ellen V. Rothenberg; José Alberola-Ila

GATA-3 is expressed at higher levels in CD4 than in CD8 SP thymocytes. Here we show that upregulation of GATA-3 expression in DP thymocytes is triggered by TCR stimulation, and the extent of upregulation correlates with the strength of the TCR signal. Overexpression of GATA-3 or a partial GATA-3 agonist during positive selection inhibits CD8 SP cell development but is not sufficient to divert class I-restricted T cell precursors to the CD4 lineage. Conversely, expression of the GATA-3 antagonist ROG or of a GATA-3 siRNA hairpin markedly enhances development of CD8 SP cells and reduces CD4 SP development. We propose that GATA-3 contributes to linking the TCR signal strength to the differentiation program of CD4 and CD8 thymocytes.


Immunity | 2000

Lck Activity Controls CD4/CD8 T Cell Lineage Commitment

Gabriela Hernandez-Hoyos; Sue J Sohn; Ellen V. Rothenberg; José Alberola-Ila

Thymocytes carrying MHC class I-restricted TCRs differentiate into CD8 T cells, while those recognizing MHC class II become CD4 T cells. The mechanisms underlying how MHC class recognition, coreceptor expression, and effector function are coordinated are not well understood. Since the tyrosine kinase Lck binds with more affinity to CD4 than CD8, it has been proposed as a candidate to mediate this process. By using transgenic mice with altered Lck activity, we show that thymocytes carrying a class II-restricted TCR develop into functional CD8 T cells when Lck activity is reduced. Conversely, thymocytes carrying a class I-restricted TCR develop into functional CD4 T cells when Lck activity is increased. These results directly show that quantitative differences in the Lck signal control the CD4/CD8 lineage decision.


Immunity | 2002

Constitutive Expression of PU.1 in Fetal Hematopoietic Progenitors Blocks T Cell Development at the Pro-T Cell Stage

Michele K. Anderson; Angela H. Weiss; Gabriela Hernandez-Hoyos; Christopher J. Dionne; Ellen V. Rothenberg

The essential hematopoietic transcription factor PU.1 is expressed in multipotent thymic precursors but downregulated during T lineage commitment. The significance of PU.1 downregulation was tested using retroviral vectors to force hematopoietic precursors to maintain PU.1 expression during differentiation in fetal thymic organ culture. PU.1 reduced thymocyte expansion and blocked development at the pro-T cell stage. PU.1-expressing cells could be rescued by switching to conditions permissive for macrophage development; thus, the inhibition depends on both lineage and developmental stage. An intact DNA binding domain was required for these effects. PU.1 expression can downregulate pre-Talpha, Rag-1, and Rag-2 in a dose-dependent manner, and higher PU.1 levels induce Mac-1 and Id-2. Thus, downregulation of PU.1 is specifically required for progression in the T cell lineage.


Advances in Immunology | 1992

The development of functionally responsive T cells.

Ellen V. Rothenberg

The work reviewed in this article separates T cell development into four phases. First is an expansion phase prior to TCR rearrangement, which appears to be correlated with programming of at least some response genes for inducibility. This phase can occur to some extent outside of the thymus. However, the profound T cell deficit of nude mice indicates that the thymus is by far the most potent site for inducing the expansion per se, even if other sites can induce some response acquisition. Second is a controlled phase of TCR gene rearrangement. The details of the regulatory mechanism that selects particular loci for rearrangement are still not known. It seems that the rearrangement of the TCR gamma loci in the gamma delta lineage may not always take place at a developmental stage strictly equivalent to the rearrangement of TCR beta in the alpha beta lineage, and it is not clear just how early the two lineages diverge. In the TCR alpha beta lineage, however, the final gene rearrangement events are accompanied by rapid proliferation and an interruption in cellular response gene inducibility. The loss of conventional responsiveness is probably caused by alterations at the level of signaling, and may be a manifestation of the physiological state that is a precondition for selection. Third is the complex process of selection. Whereas peripheral T cells can undergo forms of positive selection (by antigen-driven clonal expansion) and negative selection (by abortive stimulation leading to anergy or death), neither is exactly the same phenomenon that occurs in the thymic cortex. Negative selection in the cortex appears to be a suicidal inversion of antigen responsiveness: instead of turning on IL-2 expression, the activated cell destroys its own chromatin. The genes that need to be induced for this response are not yet identified, but it is unquestionably a form of activation. It is interesting that in humans and rats, cortical thymocytes undergoing negative selection can still induce IL-2R alpha expression and even be rescued in vitro, if exogenous IL-2 is provided. Perhaps murine thymocytes are denied this form of rescue because they shut off IL-2R beta chain expression at an earlier stage or because they may be uncommonly Bcl-2 deficient (cf. Sentman et al., 1991; Strasser et al., 1991). Even so, medullary thymocytes remain at least partially susceptible to negative selection even as they continue to mature.(ABSTRACT TRUNCATED AT 400 WORDS)


Molecular and Cellular Biology | 1994

Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors.

Paul A. Garrity; Dan Chen; Ellen V. Rothenberg; Barbara J. Wold

Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using nuclear extracts. We conclude that binding activities of all classes fail to stably occupy their cognate sites in IL-2, except following activation of T cells, and that specificity of IL-2 transcription is enforced at the level of chromosomal occupancy, which appears to be an all-or-nothing phenomenon.


Science | 2013

Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation

Hao Yuan Kueh; Ameya Champhekhar; Stephen L. Nutt; Michael B. Elowitz; Ellen V. Rothenberg

A Different Cycle for Differentiation The regulated expression of transcription factors determines cell fate decisions during cell differentiation. The transcription factor PU.1 is an important determinant in the differentiation of hematopoietic progenitors to lymphocytes or myeloid cells, where high expression induces macrophage differentiation, whereas low expression leads to the development of B lymphocytes. How PU.1 expression levels are regulated during this cell fate choice, however, is not well understood. Kueh et al. (p. 670, published online 18 July) found that in mice, reduced transcription of PU.1 led to its reduced expression in developing B lymphocytes, whereas in macrophages, PU.1 was able to accumulate stably because of a lengthening of the cell cycle. Exogenous expression of PU.1 in progenitors supported cell cycle lengthening and macrophage differentiation, and mathematical modeling suggested that such a feedback loop could maintain a slow-dividing macrophage developmental state. Regulation of cell cycle length is a feedback mechanism that controls cell fate decisions in developing macrophages. Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle–coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.


Nature Reviews Immunology | 2014

Developmental gene networks: a triathlon on the course to T cell identity

Mary Yui; Ellen V. Rothenberg

Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

Christopher B. Franco; Deirdre D. Scripture-Adams; Irina Proekt; Tom Taghon; Angela H. Weiss; Mary A. Yui; Stephanie L. Adams; Rochelle A. Diamond; Ellen V. Rothenberg

PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment.

Collaboration


Dive into the Ellen V. Rothenberg's collaboration.

Top Co-Authors

Avatar

Mary A. Yui

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rochelle A. Diamond

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hao Yuan Kueh

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele K. Anderson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gabriela Hernandez-Hoyos

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jingli A. Zhang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Long Li

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dan Chen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge