Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellen van Wilgenburg is active.

Publication


Featured researches published by Ellen van Wilgenburg.


Frontiers in Zoology | 2006

Single locus complementary sex determination in Hymenoptera: an "unintelligent" design?

Ellen van Wilgenburg; Gerard Driessen; Leo W. Beukeboom

The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)

Christopher D. Smith; Aleksey V. Zimin; Carson Holt; Ehab Abouheif; Richard Benton; Elizabeth Cash; Vincent Croset; Cameron R. Currie; Eran Elhaik; Christine G. Elsik; Marie Julie Favé; Vilaiwan Fernandes; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Martin Helmkampf; Jo Anne Holley; Hao Hu; Ana Sofia Ibarraran Viniegra; Brian R. Johnson; Reed M. Johnson; Abderrahman Khila; Jay W. Kim; Joseph G. Laird; Kaitlyn A. Mathis; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ants biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


Biology Letters | 2010

Experience influences aggressive behaviour in the Argentine ant

Ellen van Wilgenburg; Johanna Clémencet; Neil D. Tsutsui

All animals interact with conspecifics during their life, and nearly all also display some form of aggression. An enduring challenge, however, is to understand how the experiences of an individual animal influence its later behaviours. Several studies have shown that prior winning experience increases the probability of initiating fights in later encounters. Using behavioural assays in the laboratory, we provide evidence that, in Argentine ants (Linepithema humile), the mere exposure to an opponent, without the encounter escalating to a fight, also increases the probability that it will display aggression in later encounters. Argentine ant workers differ in their propensity to attack non-colonymates, with some ants repeatedly aggressive and others consistently more docile. Although 78 per cent of the workers were consistent in their behaviour from one encounter to the next, workers that did change their behaviour after an encounter with a non-colonymate more often changed from non-aggressive to aggressive, rather than the reverse. Surprisingly, a single encounter with a non-colonymate increased a workers propensity to fight in encounters up to a week later. An encounter with a non-colonymate also increased the probability that a worker would attack ants from a colony that it had not previously encountered. Thus, these interactions lowered the overall aggression threshold, rather than stimulating a specific aggressive response to a particular foreign colony. Finally, our data suggest that aggression towards non-colonymates increases with age.


PLOS ONE | 2013

Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals.

Ellen van Wilgenburg; Mark A. Elgar

Confirmation bias is a tendency of people to interpret information in a way that confirms their expectations. A long recognized phenomenon in human psychology, confirmation bias can distort the results of a study and thus reduce its reliability. While confirmation bias can be avoided by conducting studies blind to treatment groups, this practice is not always used. Surprisingly, this is true of research in animal behaviour, and the extent to which confirmation bias influences research outcomes in this field is rarely investigated. Here we conducted a meta-analysis, using studies on nestmate recognition in ants, to compare the outcomes of studies that were conducted blind with those that were not. Nestmate recognition studies typically perform intra- and inter colony aggression assays, with the a priori expectation that there should be little or no aggression among nestmates. Aggressive interactions between ants can include subtle behaviours such as mandible flaring and recoil, which can be hard to quantify, making these types of assays prone to confirmation bias. Our survey revealed that only 29% of our sample of 79 studies were conducted blind. These studies were more likely to report aggression among nestmates if they were conducted blind (73%) than if they were not (21%). Moreover, we found that the effect size between nestmate and non-nestmate treatment means is significantly lower in experiments conducted blind than those in which colony identity is known (1.38 versus 2.76). We discuss the implications of the impact of confirmation bias for research that attempts to obtain quantitative synthesises of data from different studies.


Journal of Chemical Ecology | 2010

Deciphering the Chemical Basis of Nestmate Recognition

Ellen van Wilgenburg; Robert Sulc; Kenneth J. Shea; Neil D. Tsutsui

Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains “synonyms,” chemicals that differ in structure, but not meaning.


Biology Letters | 2012

Learning and discrimination of cuticular hydrocarbons in a social insect

Ellen van Wilgenburg; Antoine Felden; Dong-Hwan Choe; Robert Sulc; Jun Luo; Kenneth J. Shea; Mark A. Elgar; Neil D. Tsutsui

Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile. Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition.


Behavioral Ecology and Sociobiology | 2011

Nestmate recognition in social insects: overcoming physiological constraints with collective decision making

Brian R. Johnson; Ellen van Wilgenburg; Neil D. Tsutsui

Social insects rank among the most abundant and influential terrestrial organisms. The key to their success is their ability to form tightly knit social groups that perform work cooperatively, and effectively exclude non-members from the colony. An extensive body of research, both empirical and theoretical, has explored how optimal acceptance thresholds could evolve in individuals, driven by the twin costs of inappropriately rejecting true nestmates and erroneously accepting individuals from foreign colonies. Here, in contrast, we use agent-based modeling to show that strong nestmate recognition by individuals is often unnecessary. Instead, highly effective nestmate recognition can arise as a colony-level property from a collective of individually poor recognizers. Essentially, although an intruder can get by one defender when their odor cues are similar, it is nearly impossible to get past many defenders if there is the slightest difference in cues. The results of our models match observed rejection rates in studies of ants, wasps, and bees. We also show that previous research in support of the optimal threshold theory approach to the problem of nestmate recognition can be alternatively viewed as evidence in favor of the collective formation of a selectively permeable barrier that allows in nestmates (at a significant cost) while rejecting non-nestmates. Finally, this work shows that nestmate recognition has a stronger task allocation component than previously thought, as colonies can nearly always achieve perfect nestmate recognition if it is cost effective for them to do so at the colony level.


Evolutionary Applications | 2010

ORIGINAL ARTICLE: The global expansion of a single ant supercolony

Ellen van Wilgenburg; Candice W. Torres; Neil D. Tsutsui

Ants are among the most damaging invasive species, and their success frequently arises from the widespread cooperation displayed by introduced populations, often across hundreds of kilometers. Previous studies of the invasive Argentine ant (Linepithema humile) have shown that introduced populations on different continents each contain a single, vast supercolony and, occasionally, smaller secondary colonies. Here, we perform inter‐continental behavioral analyses among supercolonies in North America, Europe, Asia, Hawaii, New Zealand and Australia and show that these far‐flung supercolonies also recognize and accept each other as if members of a single, globally distributed supercolony. Furthermore, populations also possess similar genetic and chemical profiles. However, these ants do show aggression toward ants from South Africa and the smaller secondary colonies that occur in Hawaii and California. Thus, the largest and most dominant introduced populations are likely descended from the same ancestral colony and, despite having been established more than 100 years ago, have diverged very little. This apparent evolutionary stasis is surprising because, in other species, some of the most rapid rates of evolutionary change have occurred in introduced populations. Given the spatial extent of the Argentine ant society we report here, there can be little doubt that this intercontinental supercolony represents the most populous known animal society.


The American Naturalist | 2013

Density of Antennal Sensilla Influences Efficacy of Communication in a Social Insect

Katherine P. Gill; Ellen van Wilgenburg; David L. Macmillan; Mark A. Elgar

Effective communication requires reliable signals and competent receptors. Theoretical and empirical accounts of animal signaling focus overwhelmingly on the capacity of the signaler to convey the message. Nevertheless, the intended receiver’s ability to detect a signal depends on the condition of its receptor organs, as documented for humans. The impact of receptor organ condition on signal reception and its consequences for functional behavior are poorly understood. Social insects use antennae to detect chemical odors that distinguish between nestmates and enemies, reacting aggressively to the latter. We investigated the impact of antennal condition, determined by the density of sensilla, on the behavior of the weaver ant Oecophylla smaragdina. Worker aggression depended upon the condition of their antennae: workers with fewer sensilla on their antennae reacted less aggressively to nonnestmate enemies. These novel data highlight the largely unappreciated significance of receptor organ condition for animal communication and may have implications for coevolutionary processes in animal communication.


Naturwissenschaften | 2012

Collective retention and transmission of chemical signals in a social insect

Katherine P. Gill; Ellen van Wilgenburg; Peter G. Taylor; Mark A. Elgar

Social insect colonies exhibit highly coordinated responses to ecological challenges by acquiring information that is disseminated throughout the colony. Some responses are coordinated directly from the signals produced by individuals that acquired the information. Other responses may require information to be transferred indirectly through a third party, thereby requiring colony-wide retention of information. Social insects use colony signature odours to distinguish between nestmates and non-nestmates, and the level of aggression between non-nestmates typically varies according to the distance between colonies and thus their history of interactions. Such coordinated, colony-specific responses may require information about particular odours to be disseminated and retained across the colony. Our field experiments with weaver ants reveal colony-wide, indirect acquisition and retention of the signature odours of a different colony with which they had experienced aggression. These data highlight the significance of interaction history and suggest the presence of a collective memory.

Collaboration


Dive into the Ellen van Wilgenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Sulc

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ly

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge