Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ellie Landman is active.

Publication


Featured researches published by Ellie Landman.


PLOS ONE | 2012

Hypoxia Inhibits Hypertrophic Differentiation and Endochondral Ossification in Explanted Tibiae

Jeroen Leijten; Liliana Moreira Teixeira; Ellie Landman; Clemens van Blitterswijk; Marcel Karperien

Purpose Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression.


Journal of the American Chemical Society | 2014

A Supramolecular Host-Guest Carrier System for Growth Factors Employing VHH Fragments

Jordi Cabanas-Danés; Emilie Dooms Rodrigues; Ellie Landman; Jasper van Weerd; Clemens van Blitterswijk; Theo Verrips; Jurriaan Huskens; Marcel Karperien; Pascal Jonkheijm

A supramolecular strategy is presented for the assembly of growth factors employing His6-tagged single-domain antibodies (VHH). A combination of orthogonal supramolecular interactions of β-cyclodextrin (βCD)-adamantyl (Ad) host-guest and N-nitrilotriacetic acid (NTA)-histidine (His) interactions was employed to generate reversible and homogeneous layers of growth factors. A single-domain antibody V(H)H fragment was identified to bind to the human bone morphogenetic protein-6 (hBMP6) growth factor and could be recombinantly expressed in E. coli. The V(H)H fragment was equipped with a C-terminal hexahistidine (His6) tether to facilitate the assembly on βCD surfaces using a linker that contains an Ad group to bind to the βCD receptors and an NTA moiety to interact with the His6-tag upon cocomplexation of Ni(2+) ions. After exploring the thermodynamic and kinetic stability of the V(H)H assemblies on βCD surfaces using a variety of experimental techniques including microcontact printing (μCP), surface plasmon resonance (SPR), microscale thermophoresis (MST), and theoretical models for determining the thermodynamic behavior of the system, hBMP6 was assembled onto the V(H)H-functionalized surfaces. After analyzing the immobilized hBMP6 using immunostaining, the biological activity of hBMP6 was demonstrated in cell differentiation experiments. Early osteogenic differentiation was analyzed in terms of alkaline phosphatase (ALP) activity of KS483-4C3 mouse progenitor cells, and the results indicated that the reversibly immobilized growth factors were functionally delivered to the cells. In conclusion, the supramolecular strategy used here offers the necessary affinity, reversibility, and temporal control to promote biological function of the growth factors that were delivered by this strategy.


Arthritis Research & Therapy | 2013

GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors

Jeroen Leijten; S.D. Bos; Ellie Landman; Nicole Georgi; Holger Jahr; Ingrid Meulenbelt; Janine N. Post; Clemens van Blitterswijk; Marcel Karperien

IntroductionOsteoarthritis is, at least in a subset of patients, associated with hypertrophic differentiation of articular chondrocytes. Recently, we identified the bone morphogenetic protein (BMP) and wingless-type MMTV integration site (WNT) signaling antagonists Gremlin 1 (GREM1), frizzled-related protein (FRZB) and dickkopf 1 homolog (Xenopus laevis) (DKK1) as articular cartilage’s natural brakes of hypertrophic differentiation. In this study, we investigated whether factors implicated in osteoarthritis or regulation of chondrocyte hypertrophy influence GREM1, FRZB and DKK1 expression levels.MethodsGREM1, FRZB and DKK1 mRNA levels were studied in articular cartilage from healthy preadolescents and healthy adults as well as in preserved and degrading osteoarthritic cartilage from the same osteoarthritic joint by quantitative PCR. Subsequently, we exposed human articular chondrocytes to WNT, BMP, IL-1β, Indian hedgehog, parathyroid hormone-related peptide, mechanical loading, different medium tonicities or distinct oxygen levels and investigated GREM1, FRZB and DKK1 expression levels using a time-course analysis.ResultsGREM1, FRZB and DKK1 mRNA expression were strongly decreased in osteoarthritis. Moreover, this downregulation is stronger in degrading cartilage compared with macroscopically preserved cartilage from the same osteoarthritic joint. WNT, BMP, IL-1β signaling and mechanical loading regulated GREM1, FRZB and DKK1 mRNA levels. Indian hedgehog, parathyroid hormone-related peptide and tonicity influenced the mRNA levels of at least one antagonist, while oxygen levels did not demonstrate any statistically significant effect. Interestingly, BMP and WNT signaling upregulated the expression of each other’s antagonists.ConclusionsTogether, the current study demonstrates an inverse correlation between osteoarthritis and GREM1, FRZB and DKK1 gene expression in cartilage and provides insight into the underlying transcriptional regulation. Furthermore, we show that BMP and WNT signaling are linked in a negative feedback loop, which might prove essential in articular cartilage homeostasis by balancing BMP and WNT activity.


Calcified Tissue International | 2013

WNT Signaling and Cartilage: Of Mice and Men

Bin Ma; Ellie Landman; Razvan Miclea; Jan M. Wit; Els C. Robanus-Maandag; Janine N. Post; Marcel Karperien

In adult articular cartilage, the extracellular matrix is maintained by a balance between the degradation and the synthesis of matrix components. Chondrocytes that sparsely reside in the matrix and rarely proliferate are the key cellular mediators for cartilage homeostasis. There are indications for the involvement of the WNT signaling pathway in maintaining articular cartilage. Various WNTs are involved in the subsequent stages of chondrocyte differentiation during development, and deregulation of WNT signaling was observed in cartilage degeneration. Even though gene expression and protein synthesis can be activated upon injury, articular cartilage has a limited ability of self-repair and efforts to regenerate articular cartilage have so far not been successful. Because WNT signaling was found to be involved in the development and maintenance of cartilage as well as in the degeneration of cartilage, interfering with this pathway might contribute to improving cartilage regeneration. However, most of the studies on elucidating the role of WNT signaling in these processes were conducted using in vitro or in vivo animal models. Discrepancies have been found in the role of WNT signaling between chondrocytes of mouse and human origin, and extrapolation of results from mouse models to the human situation remains a challenge. Elucidation of detailed WNT signaling functions will provide knowledge to improve cartilage regeneration.


Arthritis Research & Therapy | 2013

Small molecule inhibitors of WNT/β-catenin signaling block IL-1β- and TNFα-induced cartilage degradation

Ellie Landman; Razvan L Miclea; Clemens van Blitterswijk; Marcel Karperien

IntroductionIn this study, we tested the ability of small molecule inhibitors of WNT/β-catenin signaling to block interleukin 1β (IL-1β)- and tumor necrosis factor α (TNFα)-induced cartilage degradation. Proinflammatory cytokines such as IL-1β and TNFα are potent inducers of cartilage degradation by upregulating matrix metalloproteinase (MMP) expression and activity. Because WNT/β-catenin signaling was found to be involved in IL-1β- and TNFα-induced upregulation of MMP activity, we hypothesized that inhibition of WNT/β-catenin signaling might block IL-1β- and TNFα-induced cartilage degradation. We tested the effect of small molecules that block the interaction between β-catenin and TCF/Lef transcription factors on IL-1β- and TNFα-induced cartilage degradation in mouse fetal metatarsals.MethodsWe used mouse fetal metatarsals treated with IL-1β and TNFα as an ex vivo model for cytokine-induced cartilage degradation. Metatarsals were treated with IL-1β and TNFα in combination with the small molecules PKF115-584, PKF118-310 and CGP049090 at different concentrations and then harvested them for histological and gene expression analysis.ResultsWe found that IL-1β- and TNFα-induced cartilage degradation in mouse fetal metatarsals was blocked by inhibiting WNT/β-catenin signaling using small molecule PKF115-584 and partially using CGP049090 dose-dependently. In addition, we found that PKF115-584 blocked IL-1β- and TNFα-induced MMP mRNA expression, but did not reverse the inhibitory effect of IL-1β on the expression of cartilage anabolic genes.ConclusionIn this study, we show that inhibition of WNT/β-catenin signaling by small molecules can effectively prevent IL-1β- and TNFα-induced cartilage degradation by blocking MMP expression and activity. Furthermore, we elucidate the involvement of WNT/β-catenin signaling in IL-1β- and TNFα-induced cartilage degradation.


PLOS ONE | 2012

Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway.

Remco Visser; Ellie Landman; Jelle J. Goeman; Jan M. Wit; Marcel Karperien

Sotos syndrome (SoS) is characterized by tall stature, characteristic craniofacial features and mental retardation. It is caused by haploinsufficiency of the NSD1 gene. In this study, our objective was to identify downstream effectors of NSD1 and to map these effectors in signaling pathways associated with growth. Genome-wide expression studies were performed on dermal fibroblasts from SoS patients with a confirmed NSD1 abnormality. To substantiate those results, phosphorylation, siRNA and transfection experiments were performed. A significant association was demonstrated with the Mitogen-Activated Protein Kinase (MAPK) pathway. Members of the fibroblast growth factor family such as FGF4 and FGF13 contributed strongly to the differential expression in this pathway. In addition, a diminished activity state of the MAPK/ERK pathway was demonstrated in SoS. The Ras Interacting Protein 1 (RASIP1) was identified to exhibit upregulated expression in SoS. It was shown that RASIP1 dose-dependently potentiated bFGF induced expression of the MAPK responsive SBE reporter providing further support for a link between NSD1 and the MAPK/ERK signaling pathway. Additionally, we demonstrated NSD1 expression in the terminally differentiated hypertrophic chondrocytes of normal human epiphyseal growth plates. In short stature syndromes such as hypochondroplasia and Noonan syndrome, the activation level of the FGF-MAPK/ERK-pathway in epiphyseal growth plates is a determining factor for statural growth. In analogy, we propose that deregulation of the MAPK/ERK pathway in SoS results in altered hypertrophic differentiation of NSD1 expressing chondrocytes and may be a determining factor in statural overgrowth and accelerated skeletal maturation in SoS.


Journal of Materials Chemistry B | 2013

A fluorogenic monolayer to detect the co-immobilization of peptides that combine cartilage targeting and regeneration

Jordi Cabanas-Danés; Carlo Nicosia; Ellie Landman; Marcel Karperien; Jurriaan Huskens; Pascal Jonkheijm

Strategies to generate platforms combining tissue targeting and regeneration properties are in great demand in the regenerative medicine field. Here we employ an approach to directly visualize the immobilization of cysteine-terminated peptides on a novel fluorogenic surface. Peptides with relevant biological properties, CLPLGNSH and CLRGRYW, were synthesized to function as peptide binders to transforming growth factor (TGF)-β1 and collagen type II (CII). The selective immobilization of the peptides was directly detected using a fluorogenic surface. Adhered proteins were confined to patterns of these peptides matching with the fluorogenic areas. These results show that the fluorogenic signal can be used to detect the chemo-selective immobilization of non-fluorescent biomolecules and to correlate the cell response with the patterned peptides. After analyzing the sequence specificity and cross-reactivity of the binding of TGF-β1 and CII to the respective peptide regions employing immunofluorescence assays, both peptides were co-immobilized in a step-wise process as detected by the fluorogenic surface. TGF-β1 and CII could be self-sorted from a mixture in a regio-selective manner resulting in a bi-functional protein platform. Surfaces of CLPLGNSH pre-loaded with TGF-β1 showed excellent bioactivity in combination with human articular chondrocytes (HACs) and stimulated expression of chondrogenic markers.


Journal of Tissue Engineering and Regenerative Medicine | 2017

O-Phenanthroline as modulator of the hypoxic and catabolic response in cartilage tissue-engineering models.

Nicole Georgi; Ellie Landman; Travis J. Klein; Clemens van Blitterswijk; Marcel Karperien

Hypoxia has been shown to be important for maintaining cartilage homeostasis as well as for inducing chondrogenic differentiation. Ensuring low oxygen levels during in vitro culture is difficult, therefore we assessed the chondro‐inductive capabilities of the hypoxia‐mimicking agent O‐phenanthroline, which is also known as a non‐specific matrix metalloproteinase (MMP) inhibitor. We found that O‐phenanthroline reduced the expression of MMP3 and MMP13 mRNA levels during chondrogenic differentiation of human chondrocytes (hChs), as well as after TNFα/IL‐1β exposure in an explant model. Interestingly, O‐phenanthroline significantly inhibited matrix degradation in a TNFα/IL‐1β‐dependent model of cartilage degeneration when compared to control and natural hypoxia (2.5% O2). O‐Phenanthroline had limited ability to improve the chondrogenic differentiation or matrix deposition in the chondrogenic pellet model. Additionally, O‐phenanthroline alleviated MMP‐induced cartilage degradation without affecting chondrogenesis in the explant culture. The data presented in this study indicate that the inhibitory effect of O‐phenanthroline on MMP expression is dominant over the hypoxia‐mimicking effect. Copyright


Osteoarthritis and Cartilage | 2011

206 HYPOXIA INHIBITS HYPERTROPHIC DIFFERENTIATION AND ENDOCHONDRAL OSSIFICATION IN EXPLANTED TIBIAE

Jeroen Leijten; Nicole Georgi; Ellie Landman; L.S. Moreira Teixeira; C.A. van Blitterswijk; Marcel Karperien

Purpose: Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods: Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results: The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions: Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression


Langmuir | 2018

Hydrolytically Labile Linkers Regulate Release and Activity of Human Bone Morphogenetic Protein-6

Jordi Cabanas-Danés; Ellie Landman; Jurriaan Huskens; Marcel Karperien; Pascal Jonkheijm

Release of growth factors while simultaneously maintaining their full biological activity over a period of days to weeks is an important issue in controlled drug delivery and in tissue engineering. In addition, the selected strategy to immobilize growth factors largely determines their biological activity. Silica surfaces derivatized with glycidyloxy propyl trimethoxysilane and poly(glycidyl methacrylate) brushes yielded epoxide-functionalized surfaces onto which human bone morphogenetic protein-6 (hBMP-6) was immobilized giving stable secondary amine bonds. The biological activity of hBMP-6 was unleashed by hydrolysis of the surface siloxane and ester bonds. We demonstrate that this type of labile bonding strategy can be applied to biomaterial surfaces with relatively simple and biocompatible chemistry, such as siloxane, ester, and imine bonds. Our data indicates that the use of differential hydrolytically labile linkers is a versatile method for functionalization of biomaterials with a variety of growth factors providing control over their biological activity.

Collaboration


Dive into the Ellie Landman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Cabanas-Danés

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Jurriaan Huskens

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Pascal Jonkheijm

MESA+ Institute for Nanotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge