Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elling Kvamme is active.

Publication


Featured researches published by Elling Kvamme.


Neuroscience | 1999

Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum

Jon H. Laake; Yutaka Takumi; J. Eidet; Ingeborg Aasland Torgner; Bjørg Roberg; Elling Kvamme; O.P. Ottersen

Phosphate activated glutaminase is a key enzyme in glutamate synthesis. Here we have employed a quantitative and high-resolution immunogold procedure to analyse the cellular and subcellular expression of this enzyme in the cerebellar cortex. Three main issues were addressed. First, is phosphate activated glutaminase exclusively or predominantly a mitochondrial enzyme, as biochemical data suggest? Second, to what extent is the mitochondrial content of glutaminase dependent on cell type and transmitter identity? Third, can individual neurons maintain a subcellular segregation of mitochondria with different glutaminase content? An attempt was also made to disclose the intramitochondrial localization of glutaminase, and to correlate the content of this enzyme with that of glutamate and glutamine in the same mitochondria (by use of triple labelling). Antisera to the N- and C-termini of glutaminase revealed strong labelling of the putatively glutamatergic mossy fibre terminals. The vast majority of gold particles (approximately 96%) was associated with the mitochondria. Equally high labelling intensities were found in mitochondria of perikarya and dendrites in the pontine nuclei, a major source of mossy fibres. The level of glutaminase immunoreactivity in parallel and climbing fibres (which like the mossy fibres are thought to use glutamate as transmitter) was only about 20% of that in mossy fibres, and similar to that in non-glutamatergic neurons (Purkinje and Golgi cells). Glial cell mitochondria were devoid of specific glutaminase labelling and revealed a much lower glutamate:glutamine ratio than did the mitochondria of mossy fibres. As to the submitochondrial localization of glutaminase, immunogold particles were often found to be aligned with the cristae, suggesting an association of the enzyme with the inner mitochondrial membrane. However, the existence of a glutaminase pool in the mitochondrial matrix could not be excluded. The outer mitochondrial membrane was unlabelled. The present study provides quantitative evidence for a substantial heterogeneity in the mitochondrial content of glutaminase. This heterogeneity applies not only to neurons with different transmitter signatures, but also to different categories of glutamatergic pathways. In terms of the routes involved, the synthesis of transmitter glutamate may be less uniform than previously expected.


Journal of Neurochemistry | 1979

PHOSPHATE ACTIVATED GLUTAMINASE ACTIVITY AND GLUTAMINE UPTAKE IN PRIMARY CULTURES OF ASTROCYTES

Arne Schousboe; Leif Hertz; Gerd Svenneby; Elling Kvamme

Abstract— Uptake and release of glutamine were measured in primary cultures of astrocytes together with the activity of the phosphate activated glutaminase (EC 3.5.1.2). In contrast to previous findings of an effective, high affinity uptake of other amino acids (e.g. glutamate, GABA) no such uptake of glutamine was observed, though a saturable, concentrative uptake mechanism did exist (Km= 3.3 ± 0.5 mm; Vmax= 50.2 ± 12.6 nmol ± min−1± mg−1). The phosphate activated glutaminase activity in the astrocytes (6.9 ± 0.9 nmol ± min−1± mg−1) was similar to the activity found in whole brain (5.4 ± 0.7 nmol ± min −l± mg−1), which may contrast with previous findings of a higher activity of the glutamine synthetase (EC 6.3.1.2) in astrocytes than in whole brain. The observations are compatible with the hypothesis of an in vivo flow of glutamate (and GABA) from neurons to astrocytes where it is taken up and metabolized, and a compensatory flow of glutamine towards neurons and away from astrocytes although the latter cell type may be more deeply involved in glutamine metabolism than envisaged in the hypothesis.


International Journal of Developmental Neuroscience | 1985

Ontogenetic development of glutamate and gaba metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo

Orla M. Larsson; Jorgen Drejer; Elling Kvamme; Gerd Svenneby; Leif Hertz; Arne Schousboe

The development of the enzymes phosphate activated glutaminase (PAG), glutamate dehydrogenase (GLDH), glutamic‐oxaloacetic‐transaminase (GOT), glutamine synthetase (GS), GABA‐transaminase (GABA‐T) and ornithine‐δ‐aminotransferase (Orn‐T) was followed in mouse cerebral cortex in vivo and in cultured mouse cerebral cortex interneurons. It was found that GLDH, GOT and Orn‐T exhibited an enhanced developmental pattern in the cultured neurons compared to cerebral cortex. The activities of PAG and GABA‐T developed in parallel in vivo and in culture but the activity of GS remained low in the cultured neurons compared to the increasing activity of this enzyme found in vivo. Compared to cerebral cortex the cultured neurons exhibited higher activities of PAG, GLDH and Orn‐T, whereas the activities of GABA‐T and GOT were lower in the cultured cells. The activity of GS in the cultured neurons was only 5–10% of the activity in cerebral cortex in vivo. It is concluded that neurons from cerebral cortex represent a reliable model system by which the metabolism and function of GABAergic neurons can be conveniently studied in a physiologically meaningful way.


Neurochemical Research | 1985

Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellumin vivo

Jorgen Drejer; Orla M. Larsson; Elling Kvamme; Gerd Svenneby; Leif Hertz; Arne Schousboe

The ontogenetic development of the enzymes phosphate activated glutaminase (PAG), glutamate dehydrogenase (GLDH), glutamic-oxaloacetic-transaminase (GOT), glutamine synthetase (GS), and ornithine-δ-aminotransferase (Orn-T) was followed in cerebellum in vivo and in cultured cerebellar granule cells. It was found that PAG, GLDH, and GOT exhibited similar developmental patterns in the cultured neurons compared to cerebellum. PAG showed, however, a more pronounced phosphate activation in the cultured granule cells compared to in vivo. The activity of GS remained low in the cultured neurons compared to the increasing activity of this enzyme found in vivo. On the other hand Orn-T exhibited an increase in its specific activity in the cultured cells as a function of time in culture in contrast to the non-changing activity of this enzyme in vivo. Compared to cerebellum the cultured neurons exhibited higher activities of GLDH, GOT, and Orn-T whereas the activity of PAG was only slightly higher in the cultured cells. The activity of GS in the cultured neurons was only 5–10% of the activity in cerebellum in vivo. It is concluded that cultured cerebellar granule cells represent a reliable model system by which the metabolism and function of glutamatergic neurons can be conveniently studied in a physiologically meaningful way.


Neurochemical Research | 1982

Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain

Elling Kvamme; Gerd Svenneby; Leif Hertz; Arne Schousboe

Astrocytes in primary cultures contain a relatively high activity, of phosphate activated glutaminase, although it is significantly lower than that of synaptosomal enriched preparations. The relatively high glutaminase activity in the astrocytes appears not to be caused by substrate induction, since a 10-fold variation in the glutamine concentration of the culture medium does not affect the activity. Of the reaction products, only glutamate inhibits astrocytic glutaminase whereas that of synaptosomal enriched preparations is inhibited by both glutamate and ammonia. Similar to the synaptosomal enzyme, glutaminase in astrocytes is inhibited about 50% by N-ethylmaleimide, indicating N-ethylmaleimide-sensitive and-insensitive compartments of the enzyme. Calcium activates glutaminase in astrocytes as in synaptosomes, by promoting phosphate activation. Except for the lower activity and the lack of effect of ammonia, the properties of the astroglial glutaminase has been found to be no different from that of the synaptosomal one. The relatively unrestrained astroglial glutaminase may, however, argue against the concept of a glutamine cycle operating in a stoichiometric manner.


Journal of Neuroscience Research | 2001

Kinetics and localization of brain phosphate activated glutaminase

Elling Kvamme; Ingeborg Aa. Torgner; Bjørg Roberg

The cellular concentration of phosphate, the main activator of phosphate activated glutaminase (PAG) is rather constant in brain and kidney. The enzyme activity, however, is modulated by a variety of compounds affecting the binding of phosphate, such as glutamate, calcium, certain long chain fatty acids, fatty acyl CoA derivatives, members of the tricarboxylic acid cycle and protons (Kvamme et al. [2000] Neurochem. Res. 25:1407–1419). Therefore, the kinetic and allosteric properties of the enzyme are essential for regulating the enzyme activity in situ, especially because the enzymically active pool of PAG is assumed to have an external localization in the inner mitochondrial membrane, being exposed to cytosolic variation in the content of effectors. This has largely been overlooked. A hypothetical model for the allosteric interactions based on the sequential induced fit allosteric model by Koshland et al. ([1966] Biochemistry 5:365–385) is presented. Furthermore, it has been generally accepted that there exist only two isoforms of PAG, the kidney PAG that is similar to brain PAG, and the liver PAG. Therefore, the immunoreactivity of brain cells against kidney PAG antibodies has been considered a measure of PAG protein. Gomez‐Fabre et al. ([ 2000 ] Biochem. J. 345:365–375) recently found, however, that a PAG mRNA from human breast cancer ZR75 cells is present in human brain and liver, but not in the kidney. We observed only traces of PAG immunoreactivity in cultured astrocytes and cultured neuroblastoma cells, regardless whether antibodies against the C‐ and N‐termini of kidney PAG or antibodies against liver PAG were used, but considerable enzyme activity, demonstrating hitherto unknown isoforms of PAG (Torgner et al. [ 2001 ] FEBS Lett. 268(Suppl 1):PS2–031).


Neurochemical Research | 1988

Glutaminase in neurons and astrocytes cultured from mouse brain: Kinetic properties and effects of phosphate, glutamate, and ammonia

S. Hogstad; Gerd Svenneby; I. Aa. Torgner; Elling Kvamme; Leif Hertz; Arne Schousboe

Phosphate activated glutaminase comprises two kinetically distinguishable enzyme forms in cultures of cerebellar granule cells, of cortical neurons and of astrocytes. Specific activity of glutaminase is higher in cultured neurons compared with astrocytes. Glutaminase is activated by phosphate in all cell types investigated, however, glutaminase in astrocytes reguires a much higher concentration of phosphate for half maximal activation. One of the products, glutamate, inhibits the enzyme strongly, whereas the other product ammonia has only a slight inhibitory action on the enzyme.


Journal of Neurochemistry | 1973

HISTAMINE-DEPENDENT FORMATION OF N-ACETYL-ASPARTYL PEPTIDES IN MOUSE BRAIN

Karl L. Reichelt; Elling Kvamme

Abstract— The formation of N‐acetyl‐aspartyl‐peptides in mouse brain homogenates is described. The formation is completely dependent on histamine and on an ATP‐regenerating system, and partially dependent on the addition of N‐acetyl‐aspartate and certain other amino acids. The N‐acetyl‐aspartyl‐peptide formation is probably non‐ribosomal and is apparently not due to hydrolysis of preformed proteins.


Neurochemical Research | 2000

Phosphate-Activated Glutaminase and Mitochondrial Glutamine Transport in the Brain

Elling Kvamme; Bjørg Roberg; Ingeborg Aa. Torgner

A review of the properties of purified and tissue bound phosphate activated glutaminase (PAG) in brain and kidney (pig and rat) is presented, based on kinetic, electron microscopic and immunocytochemical studies. PAG is a mitochondrial enzyme and two pools can be separated, a soluble and membrane associated one. Intact mitochondria appear to express PAG accessible only to the outer phase of the inner mitochondrial membrane. This PAG has properties similar to that of the membrane fraction and polymeric form of purified enzyme. PAG in the soluble fraction has properties similar to that of the monomeric form of purified enzyme and is assumed to be dormant due to the high matrix concentration of the inhibitor glutamate. A hypothetical model for the localization of PAG in the mitochondria is presented. The activity of PAG in vivo is assumed to be regulated by cytosolic glutamate and other compounds, that affect the activation by phosphate. Glutamine is transported into brain and kidney mitochondria by a protein catalyzed energy requiring process, which may be mediated by more than one protein. There is no correlation between glutamine hydrolysis and transport.


Neuroscience Letters | 1980

Absence of preferential glutamine uptake into neurons — an indication of a net transfer of TCA constituents from nerve endings to astrocytes?

Leif Hertz; A. Yu; Gerd Svenneby; Elling Kvamme; Hanne Fosmark; Arne Schousboe

Uptake kinetics for glutamine were studied in several different neuronal preparations (perikarya prepared by gradient centrifugation, cultured cortical neurons, cultured, presumably glutamatergic cerebellar neurons, and brain prisms). In no case were any indications found of a high affinity uptake but a rather efficient low affinity uptake did occur. A similar, equally efficient low affinity uptake is, however, found in astrocytes. Thus, no preferential glutamine uptake occurs into neurons. It is, therefore, not likely that a net flow of glutamine takes place from astrocytes to neurons, compensating for the loss of TCA constituents when glutamate and GABA are released.

Collaboration


Dive into the Elling Kvamme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Schousboe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Hertz

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge