Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elliot L. Botvinick is active.

Publication


Featured researches published by Elliot L. Botvinick.


Nature | 2005

Visualizing the mechanical activation of Src

Yingxiao Wang; Elliot L. Botvinick; Yihua Zhao; Michael W. Berns; Shunichi Usami; Roger Y. Tsien; Shu Chien

The mechanical environment crucially influences many cell functions. However, it remains largely mysterious how mechanical stimuli are transmitted into biochemical signals. Src is known to regulate the integrin–cytoskeleton interaction, which is essential for the transduction of mechanical stimuli. Using fluorescent resonance energy transfer (FRET), here we develop a genetically encoded Src reporter that enables the imaging and quantification of spatio-temporal activation of Src in live cells. We introduced a local mechanical stimulation to human umbilical vein endothelial cells (HUVECs) by applying laser-tweezer traction on fibronectin-coated beads adhering to the cells. Using the Src reporter, we observed a rapid distal Src activation and a slower directional wave propagation of Src activation along the plasma membrane. This wave propagated away from the stimulation site with a speed (mean ± s.e.m.) of 18.1 ± 1.7 nm s-1. This force-induced directional and long-range activation of Src was abolished by the disruption of actin filaments or microtubules. Our reporter has thus made it possible to monitor mechanotransduction in live cells with spatio-temporal characterization. We find that the transmission of mechanically induced Src activation is a dynamic process that directs signals via the cytoskeleton to spatial destinations.


Developmental Cell | 2013

MT1-MMP-Dependent Control of Skeletal Stem Cell Commitment via a β1-Integrin/YAP/TAZ Signaling Axis

Yi Tang; R. Grant Rowe; Elliot L. Botvinick; Abhishek Kurup; Andrew J. Putnam; Motoharu Seiki; Valerie M. Weaver; Evan T. Keller; Steven A. Goldstein; Jinlu Dai; Dana L. Begun; Thomas L. Saunders; Stephen J. Weiss

In vitro, topographical and biophysical cues arising from the extracellular matrix (ECM) direct skeletal stem cell (SSC) commitment and differentiation. However, the mechanisms by which the SSC-ECM interface is regulated and the outcome of such interactions on stem cell fate in vivo remain unknown. Here we demonstrate that conditional deletion of the membrane-anchored metalloproteinase MT1-MMP (Mmp14) in mesenchymal progenitors, but not in committed osteoblasts, redirects SSC fate decisions from osteogenesis to adipo- and chondrogenesis. By effecting ECM remodeling, MT1-MMP regulates stem cell shape, thereby activating a β1-integrin/RhoGTPase signaling cascade and triggering the nuclear localization of the transcriptional coactivators YAP and TAZ, which serve to control SSC lineage commitment. These data identify a critical MT1-MMP/integrin/YAP/TAZ axis operative in the stem cell niche that oversees SSC fate determination.


Developmental Cell | 2012

Notch Ligand Endocytosis Generates Mechanical Pulling Force Dependent on Dynamin, Epsins, and Actin

Laurence Meloty-Kapella; Bhupinder Shergill; Jane Kuon; Elliot L. Botvinick; Gerry Weinmaster

Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest that Notch ligands require endocytosis, ubiquitylation, and epsin endocytic adaptors to activate signaling, but the exact role of ligand endocytosis remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins, and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose that the mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis.


Cellular and Molecular Bioengineering | 2009

Live Cells Exert 3-Dimensional Traction Forces on Their Substrata

Sung Sik Hur; Yihua Zhao; Yi-Shuan Li; Elliot L. Botvinick; Shu Chien

The traction forces exerted by an adherent cell on a substrate have been studied only in the two-dimensions (2D) tangential to substrate surface (Txy). We developed a novel technique to measure the three-dimensional (3D) traction forces exerted by live bovine aortic endothelial cells (BAECs) on polyacrylamide deformable substrate. On 3D images acquired by confocal microscopy, displacements were determined with image-processing programs, and traction forces in tangential (XY) and normal (Z) directions were computed by finite element method (FEM). BAECs generated traction force in normal direction (Tz) with an order of magnitude comparable to Txy. Tz is upward at the cell edge and downward under the nucleus, changing continuously with a sign reversal between cell edge and nucleus edge. The method was evaluated regarding accuracy and precision of displacement measurements, effects of FE mesh size, displacement noises, and simple bootstrapping. These results provide new insights into cell-matrix interactions in terms of spatial and temporal variations in traction forces in 3D. This technique can be applied to study live cells to assess their biomechanical dynamics in conjunction with biochemical and functional activities, for investigating cellular functions in health and disease.


Journal of Cellular Physiology | 2008

Comparison of Glycolysis and Oxidative Phosphorylation as Energy Sources for Mammalian Sperm Motility, Using the Combination of Fluorescence Imaging, Laser Tweezers, and Real-Time Automated Tracking and Trapping

Jaclyn M. Nascimento; Linda Z. Shi; James Tam; Charlie Chandsawangbhuwana; Barbara Durrant; Elliot L. Botvinick; Michael W. Berns

The combination of laser tweezers, fluorescent imaging, and real‐time automated tracking and trapping (RATTS) can measure sperm swimming speed and swimming force simultaneously with mitochondrial membrane potential (MMP). This approach is used to study the roles of two sources of ATP in sperm motility: oxidative phosphorylation, which occurs in the mitochondria located in the sperm midpiece and glycolysis, which occurs along the length of the sperm tail (flagellum). The relationships between (a) swimming speed and MMP and (b) swimming force and MMP are studied in dog and human sperm. The effects of glucose, oxidative phosphorylation inhibitors and glycolytic inhibitors on human sperm motility are examined. The results indicate that oxidative phosphorylation does contribute some ATP for human sperm motility, but not enough to sustain high motility. The glycolytic pathway is shown to be a primary source of energy for human sperm motility. J. Cell. Physiol. 217: 745–751, 2008.


Journal of the Royal Society Interface | 2008

The use of optical tweezers to study sperm competition and motility in primates

Jaclyn M. Nascimento; Linda Z. Shi; Stuart Meyers; Pascal Gagneux; Naida M. Loskutoff; Elliot L. Botvinick; Michael W. Berns

Optical trapping is a non-invasive biophysical tool which has been widely applied to study physiological and biomechanical properties of cells. Using laser ‘tweezers’ in combination with custom-designed computer tracking algorithms, the swimming speeds and the relative swimming forces of individual sperm can be measured in real time. This combination of physical and engineering tools has been used to examine the evolutionary effect of sperm competition in primates. The results demonstrate a correlation between mating type and sperm motility: sperm from polygamous (multi-partner) primate species swim faster and with greater force than sperm from polygynous (single partner) primate species. In addition, sperm swimming force linearly increases with swimming speed for each species, yet the regression relating the two parameters is species specific. These results demonstrate the feasibility of using these tools to study rapidly moving (μm s−1) biological cells.


PLOS ONE | 2011

Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel

Elliot L. Botvinick; Samir Shreim; Maxwell Kotlarchyk

Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.


Integrative Biology | 2011

VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF

Sean M. Anderson; Bhupinder Shergill; Zachary T. Barry; Eleana Manousiouthakis; Thomas T. Chen; Elliot L. Botvinick; Manu O. Platt; M. Luisa Iruela-Arispe; Tatiana Segura

Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3-8 pN to 6-12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events.


Developmental Cell | 2012

Optical Tweezers Studies on Notch: Single-Molecule Interaction Strength Is Independent of Ligand Endocytosis

Bhupinder Shergill; Laurence Meloty-Kapella; Abdiwahab A. Musse; Gerry Weinmaster; Elliot L. Botvinick

Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells but require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocytosis facilitates recycling to enhance ligand interactions with Notch necessary to trigger signaling. Specifically, single-molecule measurements indicate that interference of ligand endocytosis and/or recycling does not alter the force required to rupture bonds formed between cells expressing the Notch ligand Delta-like1 (Dll1) and laser-trapped Notch1 beads. Together, our analyses eliminate roles for ligand endocytosis and recycling in Dll1-Notch1 interactions and indicate that recycling indirectly affects signaling by regulating the accumulation of cell surface ligand. Importantly, our study demonstrates the utility of optical tweezers to test a role for ligand endocytosis in generating cell-mediated mechanical force.


Journal of Biomedical Optics | 2006

Analysis of sperm motility using optical tweezers

Jaclyn Nascimento; Elliot L. Botvinick; Linda Z. Shi; Barbara Durrant; Michael W. Berns

This study examines the use of optical trapping as a quantitative measure of sperm motility. The effects of laser trap duration and laser trapping power on sperm motility are described between sperm swimming force, swimmimg speed, and speed of progression (SOP) score. Sperm (SOP scores of 2-4) were trapped by a continuous-wave 1064 nm single-point gradient laser trap. Trap duration effects were quantified for 15, 10, and 5 seconds at 420 mW laser power. Laser power effects were quantified at powers of 420 mW, 350 mW, 300 mW, and 250 mW for five seconds. Swimming force, swimming speed, and SOP score relationships were examined at a trap duration and trapping power shown to minimally affect sperm motility. Swimming forces were measured by trapping sperm and subsequently decreasing laser power until the sperm escaped the trap. Swimming trajectories were calculated by custom-built software, and SOP scores were assigned by three qualified sperm scoring experts. A ubiquitous class of sperm were identified that swim with relatively high forces that are uncorrelated to swimming speed. It is concluded that sperm swimming forces measured by optical trapping provide new and valuable quantitative information to assess sperm motility.

Collaboration


Dive into the Elliot L. Botvinick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Z. Shi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Keating

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven C. George

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Abhishek Kurup

University of California

View shared research outputs
Top Co-Authors

Avatar

Barbara Durrant

Zoological Society of San Diego

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge