Ellis Cooper
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ellis Cooper.
The Journal of Neuroscience | 1998
Ali Pejmun Haghighi; Ellis Cooper
A common feature of neuronal nicotinic acetylcholine receptors (nAChRs) is that they conduct inward current at negative membrane potentials but little outward current at positive membrane potentials, a property referred to as inward rectification. Physiologically, inward rectification serves important functions, and the main goal of our study was to investigate the mechanisms underlying the rectification of these receptors. We examined recombinant α3β4 and α4β2neuronal nAChR subtypes expressed in Xenopus oocytes and native nAChRs expressed on superior cervical ganglion (SCG) neurons. Whole-cell ACh-evoked currents recorded from these receptors exhibited strong inward rectification. In contrast, we showed that single-channel currents from these neuronal nAChRs measured in outside-out patches outwardly rectify. On the basis of recent findings that spermine, a ubiquitous intracellular polyamine, confers rectification to glutamate receptors and inwardly rectifying potassium channels, we investigated whether spermine causes neuronal nAChRs to inwardly rectify. When spermine was added to the patch electrode in outside-out recordings, it caused a concentration- and voltage-dependent block of ACh-evoked single-channel currents. Using these single-channel data and physiological concentrations of intracellular spermine, we could account for the inward rectification of macroscopic whole-cell ACh-evoked conductance–voltage relationships. Therefore, we conclude that the voltage-dependent block by intracellular spermine underlies inward rectification of neuronal nAChRs. We also found that extracellular spermine blocks both α3β4 and α4β2 receptors; this finding points to a mechanism whereby increases in extracellular spermine, perhaps during pathological conditions, could selectively block these receptors.
Journal of Cell Biology | 2002
Jacinthe Gingras; Siamnak Rassadi; Ellis Cooper; Michael J. Ferns
Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrins role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.
Neuron | 2010
Verónica Campanucci; Arjun Krishnaswamy; Ellis Cooper
Most people with diabetes develop severe complications of the autonomic nervous system; yet, the underlying causes of many diabetic-induced dysautonomias are poorly understood. Here we explore the idea that these dysautonomias results, in part, from a defect in synaptic transmission. To test this idea, we investigated cultured sympathetic neurons and show that hyperglycemia inactivates nAChRs through a mechanism involving an elevation in reactive oxygen species and an interaction with highly conserved cysteine residues located near the intracellular mouth of the nAChR channel. Consistent with this, we show that diabetic mice have depressed ganglionic transmission and reduced sympathetic reflexes, whereas diabetic mice expressing mutant postsynaptic nAChRs that lack the conserved cysteine residues on the alpha3 subunit have normal synaptic transmission in sympathetic ganglia and normal sympathetic reflexes. Our work suggests a new model for diabetic-induced dysautonomias and identifies ganglionic nAChRs as targets of hyperglycemia-induced downstream signals.
Biophysical Journal | 1999
Adam J. Sherman; Alvin Shrier; Ellis Cooper
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques.
The Journal of Neuroscience | 2008
Verónica A. Campanucci; Arjun Krishnaswamy; Ellis Cooper
Neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated ion channels implicated in a variety of cognitive, motor, and sensory behaviours, are targeted to compartments rich in mitochondria, particularly postsynaptic domains and presynaptic terminals, exposing these receptors to reactive oxygen species (ROS) generated by oxidative phosphorylation. In addition, these receptors can become exposed to ROS during the progression of certain neurodegenerative diseases. Because ROS are known to modify several membrane proteins, including some types of ion channels, it raises the question of whether elevations in cytosolic ROS alter the function of nAChRs. To address this, we elevated ROS in cultured sympathetic neurons, directly by perfusing neurons intracellularly with ROS, indirectly by blocking the mitochondrial electron transport chain, or noninvasively by transient NGF removal; we then simultaneously measured changes in cytosolic ROS levels and whole-cell ACh-evoked currents. In addition, we elevated cytosolic ROS in postganglionic neurons in intact ganglia and measured changes in nerve-evoked EPSPs. Our experiments indicate that mild elevations in cytosolic ROS, including that produced by transient interruption of NGF signaling, induce a use-dependent, long-lasting rundown of ACh-evoked currents on cultured sympathetic neurons and a long-lasting depression of fast nerve-evoked EPSPs. We show that these effects of cytosolic ROS are specific to nAChRs on neurons and do not cause rundown of ACh-evoked currents on muscle. Our results demonstrate that elevations in cytosolic ROS inactivate neuronal nAChRs in a use-dependent manner and suggest that mild oxidative stress impairs mechanisms mediated by cholinergic nicotinic signaling at neuronal–neuronal synapses.
Neuron | 2009
Arjun Krishnaswamy; Ellis Cooper
A well-accepted view of developing circuits is that synapses must be active to mature and persist, whereas inactive synapses remain immature and are eventually eliminated. We question this long-standing view by investigating nonfunctional cholinergic nicotinic synapses in the superior cervical ganglia (SCG) of mice with a disruption in the alpha3 nicotinic receptor (nAChR) subunit gene, a gene essential for fast synaptic transmission in sympathetic ganglia. Using imaging and electrophysiology, we show that synapses persist for at least 2-3 months without postsynaptic activity; however, the presynaptic terminals lack high-affinity choline transporters (CHTs), and as a result, they are quickly depleted of transmitter. Moreover, we demonstrate with rescue experiments that CHT is induced by signals downstream of postsynaptic activity, converting immature terminals to mature terminals capable of sustaining transmitter release in response to high-frequency or continuous firing. Importantly, postsynaptic neurons must be continually active to maintain CHT in presynaptic terminals.
The Journal of Neuroscience | 2005
Siamak Rassadi; Arjun Krishnaswamy; Brigitte Pié; Russell McConnell; Michele H. Jacob; Ellis Cooper
In vertebrates, synaptic activity exerts an important influence on the formation of neural circuits, yet our understanding of its role in directing presynaptic and postsynaptic differentiation during synaptogenesis is incomplete. This study investigates how activity influences synaptic differentiation as synapses mature during early postnatal life. Specifically, we ask what happens to presynaptic terminals when synapses develop without functional postsynaptic receptors and without fast synaptic transmission. To address this issue, we investigated cholinergic nicotinic synapses in sympathetic ganglia of mice with a null mutation for the α3 nicotinic ACh receptor gene. Disrupting the α3 gene completely eliminates fast excitatory synaptic potentials on postganglionic sympathetic neurons, establishing a crucial role for α3-containing postsynaptic receptors in synaptic transmission. Interestingly, the preganglionic nerve terminals form morphologically normal synapses with sympathetic neurons, and these synapses persist without activity in postnatal animals. Surprisingly, when stimulating the preganglionic nerve at physiological rates, we discovered a significant decrease in ACh output from the presynaptic terminals in these α3–/– sympathetic ganglia. We show that this decrease in ACh output from the presynaptic terminals results, in part, from a lack of functional high-affinity choline transporters. We conclude the following: (1) fast synaptic transmission in mammalian SCG requires α3 expression; (2) in the absence of activity, the preganglionic nerve forms synapses that appear morphologically normal and persist for several weeks; and (3) to sustain transmitter release, developing presynaptic terminals require an activity-dependent retrograde signal.
The Journal of Physiology | 2012
Arjun Krishnaswamy; Ellis Cooper
Abstract An intriguing feature of several nicotinic acetylcholine receptors (nAChRs) on neurons is that their subunits contain a highly conserved cysteine residue located near the intracellular mouth of the receptor pore. The work summarized in this review indicates that α3β4‐containing and α4β2‐containing neuronal nAChRs, and possibly other subtypes, are inactivated by elevations in intracellular reactive oxygen species (ROS). This review discusses a model for the molecular mechanisms that underlie this inactivation. In addition, we explore the implications of this mechanism in the context of complications that arise from diabetes. We review the evidence that diabetes elevates cytosolic ROS in sympathetic neurons and inactivates postsynaptic α3β4‐containing nAChRs shortly after the onset of diabetes, leading to a depression of synaptic transmission in sympathetic ganglia, an impairment of sympathetic reflexes. These effects of ROS on nAChR function are due to the highly conserved Cys residues in the receptors: replacing the cysteine residues in α3 allow ganglionic transmission and sympathetic reflexes to function normally in diabetes. This example from diabetes suggests that other diseases involving oxidative stress, such as Parkinsons disease, could lead to the inactivation of nAChRs on neurons and disrupt cholinergic nicotinic signalling.
Neuron | 1988
C.R. Bader; Daniel Bertrand; Ellis Cooper; A. Mauro
Muscle satellite cells play an important role in the postnatal growth of skeletal muscle and in the regeneration of damaged muscle during adult life. Little is known about the physiological properties of satellite cells in their dormant state as they lie adjacent to the intact muscle fibers, underneath the basement membrane. Our recent experiments, using patch clamp techniques, indicate that no tight electrical coupling is present between satellite cells and the muscle fiber dissociated from rat flexor digitorum brevis. Satellite cells possess sodium channels with low sensitivity to tetrodotoxin and at a much lower density than muscle. In addition, satellite cells are insensitive to acetylcholine (ACh) for at least 24 hr after having been removed from the animal, even when detached from their muscle fiber. However, we could measure ACh-evoked currents from satellite cells 48-72 hr in culture, indicating that ACh sensitivity develops with time.
Annals of the New York Academy of Sciences | 2006
Ellis Cooper
Abstract: Nicotinic acetylcholine receptors (nAChRs) play an important role in various processes involved in regulating systemic blood pressure. These receptors are expressed at excitatory cholinergic synapses between sympathetic preganglionic neurons and postganglionic sympathetic neurons and link the integrative activities of the CNS with peripheral effector mechanisms of the sympathetic nervous system. Nicotinic AChRs are also expressed on a subset of vagal afferent neurons, including those involved in baroreceptor reflexes. This review discusses the developmental expression of nAChRs on vagal afferent neurons and two factors that influence the differentiation of these neurons: ganglionic satellite cells and neurotrophins. In addition, this review discusses two important properties of neuronal nAChRs: inward rectification and calcium permeability. At the molecular level, intracellular polyamines, acting as gating particles, effectively block the receptor pore in a voltage‐dependent manner, producing inward rectification. Moreover, a critical structural determinant underlies both the block by intracellular polyamines and calcium permeability. Finally, this review discusses the modulation and block of neuronal nAChRs by extracellular polyamines and the possible implications for neurodegenerative diseases.