Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elly P. H. Best is active.

Publication


Featured researches published by Elly P. H. Best.


Hydrobiologia | 2001

Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth

Elisabeth H. S. Van Duin; Gerard Blom; F. Johannes Los; Robert Maffione; Richard C. Zimmerman; Carl F. Cerco; Mark Dortch; Elly P. H. Best

The underwater light climate ultimately determines the depth distribution, abundance and primary production of autotrophs suspended within and rooted beneath the water column. This paper addresses the underwater light climate, with reference to effects of suspended solids and growth responses of autotrophs with emphasis on phytoplankton.Effects of the most important factors contributing to the absorption and scattering of light in surface waters were described. A comparison between spectral and scalar approaches to underwater light climate modeling was made and examples of linear approximations to light attenuation equations were presented. It was demonstrated that spectral and scalar photosynthesis models may converge to similar values in spectral-flat, high photon flux environments, but that scalar PAR models may overestimate biomass-specific production by 70%. Such differences can lead to serious overestimates of habitat suitability for the growth and survival of submersed macrophytes, particularly in relatively turbid, coastal waters.Relationships between physical and optical properties of suspended sediments were described theoretically, and illustrated with modeling examples and measurements. It was found that the slowly settling particulate fraction contributed substantially to the suspended solids concentration, and greatly to light attenuation within the water column. It was concluded that distinguishing particles by fall velocity and concomitant light attenuation properties in the modeling of underwater light conditions allowed the establishment of useful, although not simply linear, relationships.In eutrophic, shallow lakes, the largest contribution to light attenuation often originates from phytoplankton on a seasonal basis (months–years), but from suspended solids behavior on a shorter time scale (days–weeks), particularly when water bodies are wind-exposed. Temporal and spatial variabilities in wave height, suspended solids concentrations, and light attenuation within the water column, and their importance for autotrophic growth were described, and illustrated with a case study pertaining to Markermeer, The Netherlands. The influence of underwater light conditions on phytoplankton succession was briefly discussed and illustrated with a case study pertaining to Lake Veluwe, The Netherlands. It was concluded that modeling the underwater light climate in a water body on a few sites only can indicate how important various components are for the attenuation of light, but based on the current state of the art, it can not be expected that this will provide accurate predictions of the underwater light climate, and of phytoplankton and submersed macrophyte growth.


Hydrobiologia | 2001

Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential

Elly P. H. Best; Christopher P. Buzzelli; Steven M. Bartell; Richard L. Wetzel; William A. Boyd; Robert D. Doyle; Kym Rouse Campbell

The underwater light climate is one of the most important determinants of submersed aquatic vegetation. Because of the recent, large-scale, declines in aquatic vegetation, largely attributed to deterioration of the underwater light climate, interest in tools to predict the wax and wane of aquatic macrophyte populations has greatly increased. This paper summarizes two modeling approaches that can be applied to assess impacts of changes in underwater light climate on submersed vegetation. The first, stand-alone, model type focuses on metabolism and biomass formation of submersed freshwater macrophytes with difference in phenologies. This type is illustrated by examples from various sites using models developed for the freshwater macrophytes Hydrilla verticillata (L.f.) Royle (HYDRIL) and Myriophyllum spicatum L. (MILFO), and also by an example ecological risk assessment. The models (HYDRIL and MILFO) track carbon flow through the vegetation in meter-squared (m2) water columns. The models include descriptions of various factors that affect biomass dynamics, such as site-characteristic changes in climate, latitude, light attenuation within the water column, carbon assimilation rate at light saturation, temperature, wintering strategies, grazing and mechanical control (removal of shoot biomass). Simulated biomass, net assimilation and maintenance respiration over a relatively short (1–5 year) period agree well with measured values. The models are, therefore, believed to be suitable for predicting plant community production, growth and survival characteristics over relatively short periods over a large range of sites. The feasibility of using a macrophyte growth model of the HYDRIL type for ecological risk assessment is demonstrated. It is used to evaluate the consequences of management changes in large rivers for the survival of submersed vegetation. The current assessment evaluates the potential impact of increased commercial navigation traffic on the growth of Potamogeton pectinatus L. in Pool 4 of the Upper Mississippi River, U.S.A. In this case, navigational traffic scenarios were translated into suspended solids concentrations and underwater light climate, with the latter being used as inputs into the aquatic plant growth model. Model results demonstrate that the scenario increases in commercial traffic cause minimal decreases in growth and vegetative reproduction. Results indicate that this growth model can be a useful tool in ecological risk assessment, since the required stress-response relationships could be established. The second, integrated, model type focuses on the role of seagrass and other primary producers in estuarine littoral zone material cycling (carbon and nitrogen) at the Goodwin Islands, Virginia, U.S.A. The latter model was used to explore the effects of changes


Hydrobiologia | 2004

Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system?

William F. James; Elly P. H. Best; John W. Barko

We examined sediment resuspension and light attenuation in relation to the potential for macrophytes to improve water quality conditions in Peoria Lake, Illinois (U.S.A.). The lake exhibited high total suspended solids (TSS) loading and retention of predominantly fine-grained particles in 2000. Large fetches along prevailing wind rose, coupled with shallow morphometry and sediment particles composed of >90% silt and clay resulted in frequent periods of sediment resuspension. As calculated (wave theory) shear stress increased above the critical shear stress (measured experimentally), turbidity increased substantially at a resuspension monitoring station. Resuspension model explorations suggested that establishment of submersed aquatic macrophytes could substantially reduce sediment resuspension in Peoria Lake. However, Kd is currently very high, while Secchi transparency low, at in-lake stations. Thus, in order to establish a persistent macrophyte population in the lake to control resuspension, the underwater light regime will have to improve quite dramatically.


Hydrobiologia | 1990

Studies on decomposition ofCeratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments

Elly P. H. Best; J. H. A. Dassen; Jaap J. Boon; G. Wiegers

A study was made of decomposition ofCeratophyllum demersum litter over a 17-day period under controlled conditions of temperature and oxygen (5, 10 and 18 °C; aerobic and anaerobic) and over a 169-day period in the field (Lake Vechten, The Netherlands). Litter, water and sediment were sampled on the 0, 2, 4, 7 and 17th day under controlled conditions and on the 0, 17, 49, 127 and 169th day in the field. The litter was analyzed quantitatively for dry mass, ash, carbon, nitrogen, phosphorus and qualitatively of organic composition by pyrolysis mass spectrometry. The water was analyzed for the elemental concentrations of organic carbon (total and dissolved), nitrogen (total, ammonia and particulate) and phosphorus (total and orthophosphate) and for the concentrations of photosynthetic pigments and bacteria. The sediment was analyzed for the elemental concentrations of nitrogen, carbon and phosphorus, and for bacterial numbers.The pattern of litter mass loss fitted an exponential model fairly well. Mass decreased faster under controlled aerobic than under anaerobic conditions and the decrease was stimulated by increasing temperature, relatively more in the range of 5 to 10 °C (by 20%) than in the range of 10 of 18 °C (by 2%). The residual mass ranged from 73 to 43% of initial under controlled aerobic conditions and from 84 to 65% under anaerobic conditions after 17 days. It decreased far less in the field, to 38% of initial mass in the field after 169 days.The litter initially lost a carbohydrate fraction by leaching in all treatments. The protein content decreased initially as well but increased subsequently at increasing temperature stimulated under anaerobic conditions. The changes in organic composition were correlated with those in nitrogen but not with those in carbon and phosphorus contents. The organic composition of litter incubated in the field differed from that of litter incubated in the laboratory. The field residues contained less proteinaceous material than the laboratory residues.The changes in carbon, nitrogen and phosphorus concentrations in the litter showed different patterns. The carbon concentration generally increased, the nitrogen concentration initially dropped and increased subsequently, and the phosphorus concentration initially dropped and remained relatively constant subsequently. Chemical immobilization of the decomposition process may have occurred in the laboratory, but was unlikely in the field.Carbon, nitrogen and phosphorus left the litter initially largely in particulate form and were recovered in the water. The ratio dissolved: total nutrient concentration was lower under controlled aerobic than under anaerobic conditions. Increasing temperature stimulated bacterial use of dissolved organic carbon and nitrogen. A rapid nutrient flow occurred from macrophyte litter, via water to sediment.The phytoplankton biomass in the water was greatly stimulated by substances freed from the decomposing litter. Diatoms increased generally relatively more than green algae, predominating alternatively with green algae under aerobic conditions and continuously under anaerobic conditions. Bacterial numbers in the water initially increased, partly due to transgression of bacteria from the sediment-water interface to the water and partly due to an actual increase in community biomass. The bacteria returned largely to the sediment-water interface, stimulated by increasing temperature, as most of the substrate readily usable by them had left the litter in the litter-bag and was associated with the upper sediment layers.It is feasible that the annual die-off of theC. demersum population of Lake Vechten barely affects nutrient cycling in the lake, because the contribution to the nutrient pools of the lake when fully mixed is only small. However, small particles originating from decomposingC. demersum litter may influence the lake considerably by decreasing water transparency and serving as a food source for filter-feeders and detritivorous macrofauna.


Hydrobiologia | 1982

The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production

Elly P. H. Best

The macrophytic species compositions in Lake Vechten of 1963 and 1979–80 were compared and showed a considerable change. The main vegetation types were mapped in 1973, 1978, 1979 and 1980. All macrophytic communities, i.e. submerged, floating-leaved and emergent vegetation types, declined mainly due to increasing water turbidity, increasing tree-shading and, from 1978 onwards, grazing and trampling by cattle.Production rates, derived from different combinations of measurement and calculation, were compared. The macrophytes contributed only about 7% to the total lake production in 1980.


Environmental Science & Technology | 2011

Predicting Net Mercury Methylation in Sediments Using Diffusive Gradient in Thin Films Measurements

Olivier Clarisse; Brian Dimock; Holger Hintelmann; Elly P. H. Best

Diffusive gradient in thin film (DGT) sediment probes for methylmercury (MMHg) were successfully deployed for up to 30 h in three mudflat sediments in San Francisco Bay for measuring labile fractions of dissolved MMHg in pore water. Our calculations show that the local DGT-induced depletion of MMHg in sediment pore waters should be fully compensated by the natural in situ MMHg production and its subsequent remobilization from the solid phase. DGT results were interpreted in terms of labile pore water concentration and provide MMHg concentration depth profiles with a centimeter resolution. Average concentrations of DGT-labile MMHg were 2.10 ± 0.29 and 1.64 ± 0.30 ng L(-1) at China Camp and Hamilton Army Airfield sediment pore waters, respectively, while the riverine location at Petaluma showed a distinct peak of 7.1 ng L(-1) near the sediment surface. Using isotope-enriched mercury species, high resolution depth profiles of MMHg net production rates ranging from 0.2 to 9.8 ng g(-1) d(-1) were obtained in parallel sediment cores sampled closely to DGT deployment sites. A positive, linear relationship between MMHg net production rates and labile MMHg concentrations acquired through DGT measurements was found and explained 79% of the variability in the data set. The latter illustrates that mercury methylation, a biogeochemical process, strongly affected the quantity of MMHg accumulated by the DGT device in the sediment and suggests that DGT measurements have the potential to predict net methylation rates.


Environmental Toxicology and Chemistry | 2008

Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms.

Elly P. H. Best; Henry E. Tatem; Kaaren N. Geter; Melissa L. Wells; Brian K. Lane

The present study was aimed at providing data to be used at predicting exposure-based effects of 2,4,6-trinitrotoluene (TNT) aged in soil on endpoint organisms representing two trophic levels. These data can be used to define criteria or reference values for environmental management and conducting specific risk assessment. Long-term exposure tests were conducted to evaluate sublethal toxicity and uptake of aged soil-based explosives, with TNT as the main contaminant. In these tests, plants were exposed for 55 d, and biomass and explosives residues were determined. Worms were exposed for 28 and 42 d, and biomass, number, and tissue residues were determined. Biomass of Lolium perenne significantly decreased with soil-TNT concentration, and an effective concentration causing a 20% decrease in biomass (EC20) for TNT metabolites of 3.75 mg/kg was calculated. The concentrations of TNT metabolites in shoots and roots were significantly related to concentrations in soil, as were concentrations of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The mean bioconcentration factors, indicating the potential of a chemical to accumulate in an organism, were 0.9 for TNT metabolites, 71.8 for RDX, and 12.2 for HMX in L. perenne shoots. Biomass of Eisenia fetida adults significantly decreased with soil-TNT concentration, and an EC20 for TNT of 3.70 mg/kg was calculated. The TNT, RDX, and HMX levels in E. fetida were below detection.


Hydrobiologia | 2001

Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth : Modelling sediment resuspension, water quality and submersed aquatic vegetation

Elisabeth H. S. Van Duin; G. Blom; F. Johannes Los; Robert Maffione; Richard C. Zimmerman; Carl F. Cerco; Mark Dortch; Elly P. H. Best


Chemosphere | 2006

Effects, transfer, and fate of RDX from aged soil in plants and worms

Elly P. H. Best; Kaaren N. Geter; Henry E. Tatem; B.K. Lane


Hydrobiologia | 2001

Modeling submersed macrophyte growth in relation to underwater light climate : Modeling approaches and application potential : Modelling sediment resuspension, water quality and submersed aquatic vegetation

Elly P. H. Best; Christopher P. Buzzelli; Steven M. Bartell; Richard L. Wetzel; William A. Boyd; Robert D. Doyle; Kym Rouse Campbell

Collaboration


Dive into the Elly P. H. Best's collaboration.

Top Co-Authors

Avatar

William A. Boyd

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Henry E. Tatem

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William F. James

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Kym Rouse Campbell

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Melissa L. Wells

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Steven M. Bartell

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl F. Cerco

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Buzzelli

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge