Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elmar Behrmann is active.

Publication


Featured researches published by Elmar Behrmann.


Science | 2012

Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex

Javier M. Hernandez; Alexander Stein; Elmar Behrmann; Dietmar Riedel; Anna Cypionka; Zohreh Farsi; Peter J. Walla; Stefan Raunser; Reinhard Jahn

No More Fusion Confusion Biophysical models explain membrane fusion as a sequence of steps—including membrane contact, formation of a fusion stalk (merger of proximal monolayers), development of contact between distal monolayers that may or may not expand (hemifusion), and, finally, rupture of this diaphragm resulting in the opening of a fusion pore. Biological membrane fusion reactions are often driven by so-called SNARE proteins. By using a reconstituted membrane fusion system, Hernandez et al. (p. 1581, published online 31 May) have now been able to correlate precisely the states of SNARE zippering with intermediate structures along the fusion pathway. The results suggest that a tightly docked state, with a membrane distance so close that no proteins fit in between them, represents a critical fusion intermediate as a consequence of SNARE zippering. This intermediate is incompatible with a SNARE-driven stalk or with a ringlike arrangement of SNAREs depicted in most current models of membrane fusion. During vesicle membrane fusion, straining of lipids at the edges of an extended contact zone may initiate fusion. Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.


Cell | 2015

Structural Snapshots of Actively Translating Human Ribosomes

Elmar Behrmann; Justus Loerke; Tatyana V. Budkevich; Kaori Yamamoto; Andrea Schmidt; Pawel A. Penczek; Matthijn R. J. Vos; Jörg Bürger; Thorsten Mielke; Patrick Scheerer; Christian M. T. Spahn

Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.


Journal of Molecular Biology | 2011

Structural Characterization of Polyglutamine Fibrils by Solid-State NMR Spectroscopy

Robert Schneider; Miria C. Schumacher; Henrik Mueller; Deepak Nand; Volker Klaukien; Henrike Heise; Dietmar Riedel; Gerhard Wolf; Elmar Behrmann; Stefan Raunser; Ralf Seidel; Martin Engelhard; Marc Baldus

Protein aggregation via polyglutamine stretches occurs in a number of severe neurodegenerative diseases such as Huntingtons disease. We have investigated fibrillar aggregates of polyglutamine peptides below, at, and above the toxicity limit of around 37 glutamine residues using solid-state NMR and electron microscopy. Experimental data are consistent with a dry fibril core of at least 70-80 Å in width for all constructs. Solid-state NMR dipolar correlation experiments reveal a largely β-strand character of all samples and point to tight interdigitation of hydrogen-bonded glutamine side chains from different sheets. Two approximately equally frequent populations of glutamine residues with distinct sets of chemical shifts are found, consistent with local backbone dihedral angles compensating for β-strand twist or with two distinct sets of side-chain conformations. Peptides comprising 15 glutamine residues are present as single extended β-strands. Data obtained for longer constructs are most compatible with a superpleated arrangement with individual molecules contributing β-strands to more than one sheet and an antiparallel assembly of strands within β-sheets.


Nature Structural & Molecular Biology | 2014

Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA

Hiroshi Yamamoto; Anett Unbehaun; Justus Loerke; Elmar Behrmann; Marianne Collier; Jörg Bürger; Thorsten Mielke; Christian M. T. Spahn

The universally conserved eukaryotic initiation factor (eIF) 5B, a translational GTPase, is essential for canonical translation initiation. It is also required for initiation facilitated by the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) RNA. eIF5B promotes joining of 60S ribosomal subunits to 40S ribosomal subunits bound by initiator tRNA (Met-tRNAiMet). However, the exact molecular mechanism by which eIF5B acts has not been established. Here we present cryo-EM reconstructions of the mammalian 80S–HCV-IRES–Met-tRNAiMet–eIF5B–GMPPNP complex. We obtained two substates distinguished by the rotational state of the ribosomal subunits and the configuration of initiator tRNA in the peptidyl (P) site. Accordingly, a combination of conformational changes in the 80S ribosome and in initiator tRNA facilitates binding of the Met-tRNAiMet to the 60S P site and redefines the role of eIF5B as a tRNA-reorientation factor.


Journal of Cell Science | 2013

FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers

André Schönichen; Hans Georg Mannherz; Elmar Behrmann; Antonina Joanna Mazur; Sonja Kühn; Unai Silván; Cora-Ann Schoenenberger; Oliver T. Fackler; Stefan Raunser; Leif Dehmelt; Matthias Geyer

Summary Formins are actin polymerization factors that are known to nucleate and elongate actin filaments at the barbed end. In the present study we show that human FHOD1 lacks actin nucleation and elongation capacity, but acts as an actin bundling factor with capping activity toward the filament barbed end. Constitutively active FHOD1 associates with actin filaments in filopodia and lamellipodia at the leading edge, where it moves with the actin retrograde flow. At the base of lamellipodia, FHOD1 is enriched in nascent, bundled actin arcs as well as in more mature stress fibers. This function requires actin-binding domains located N-terminally to the canonical FH1–FH2 element. The bundling phenotype is maintained in the presence of tropomyosin, confirmed by electron microscopy showing assembly of 5 to 10 actin filaments into parallel, closely spaced filament bundles. Taken together, our data suggest a model in which FHOD1 stabilizes actin filaments by protecting barbed ends from depolymerization with its dimeric FH2 domain, whereas the region N-terminal to the FH1 domain mediates F-actin bundling by simultaneously binding to the sides of adjacent F-actin filaments.


Journal of Structural Biology | 2012

Real-space processing of helical filaments in SPARX

Elmar Behrmann; Guozhi Tao; David L. Stokes; Edward H. Egelman; Stefan Raunser; Pawel A. Penczek

We present a major revision of the iterative helical real-space refinement (IHRSR) procedure and its implementation in the SPARX single particle image processing environment. We built on over a decade of experience with IHRSR helical structure determination and we took advantage of the flexible SPARX infrastructure to arrive at an implementation that offers ease of use, flexibility in designing helical structure determination strategy, and high computational efficiency. We introduced the 3D projection matching code which now is able to work with non-cubic volumes, the geometry better suited for long helical filaments, we enhanced procedures for establishing helical symmetry parameters, and we parallelized the code using distributed memory paradigm. Additional features include a graphical user interface that facilitates entering and editing of parameters controlling the structure determination strategy of the program. In addition, we present a novel approach to detect and evaluate structural heterogeneity due to conformer mixtures that takes advantage of helical structure redundancy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes

Begoña Sot; Elmar Behrmann; Stefan Raunser; Alfred Wittinghofer

Rasal, belonging to the GAP1 subfamily of Ras GTPase-activating proteins (RasGAPs) with dual RasGAP/RapGAP specificity, is epigenetically silenced in several tumor types. Surprisingly, the isolated protein has GAP activity on Rap but not on Ras. Its membrane recruitment is regulated by interaction with calcium and lipids, which simultaneously induces its RasGAP activity through a yet unknown mechanism. Here we show that the interaction of Rasal with membranes induces Rasal RasGAP activity by spatial and conformational regulation, although it does not have any effect on its RapGAP activity. Not only is colocalization of Rasal and Ras in the membrane essential for RasGAP activation, but direct and Ca-dependent interaction between the tandem C2 domains of Rasal and lipids of the membrane is also required. Whereas the C2A domain binds specifically phosphatidylserine, the C2B domain interacts with several phosphoinositol lipids. Finally we show, that similar to the C2 domains of synaptotagmins, the Rasal tandem C2 domains are able to sense and induce membrane curvature by the insertion of hydrophobic loops into the membrane.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter

John Jia En Chua; Eugenia Butkevich; Josephine M. Worseck; Maike Kittelmann; Mads Grønborg; Elmar Behrmann; Ulrich Stelzl; Nathan J. Pavlos; Maciej Lalowski; Stefan Eimer; Erich E. Wanker; Dieter R. Klopfenstein; Reinhard Jahn

Presynaptic nerve terminals are formed from preassembled vesicles that are delivered to the prospective synapse by kinesin-mediated axonal transport. However, precisely how the various cargoes are linked to the motor proteins remains unclear. Here, we report a transport complex linking syntaxin 1a (Stx) and Munc18, two proteins functioning in synaptic vesicle exocytosis at the presynaptic plasma membrane, to the motor protein Kinesin-1 via the kinesin adaptor FEZ1. Mutation of the FEZ1 ortholog UNC-76 in Caenorhabditis elegans causes defects in the axonal transport of Stx. We also show that binding of FEZ1 to Kinesin-1 and Munc18 is regulated by phosphorylation, with a conserved site (serine 58) being essential for binding. When expressed in C. elegans, wild-type but not phosphorylation-deficient FEZ1 (S58A) restored axonal transport of Stx. We conclude that FEZ1 operates as a kinesin adaptor for the transport of Stx, with cargo loading and unloading being regulated by protein kinases.


Journal of Biological Chemistry | 2013

Functional characterization of human myosin-18A and its interaction with F-actin and GOLPH3.

Manuel H. Taft; Elmar Behrmann; Lena-Christin Munske-Weidemann; Claudia Thiel; Stefan Raunser; Dietmar J. Manstein

Background: Class-18A myosins share a unique N-terminal extension comprising a PDZ module and a KE-rich region. Results: Human myosin-18A binds F-actin via its motor domain in a nucleotide-dependent manner and via the KE-rich region, modulated by direct interaction between the PDZ module and GOLPH3. Conclusion: Myosin-18A binds F-actin and recruits interaction partners to the cytoskeleton. Significance: This work establishes a molecular basis for myosin-18A mediated membrane-cytoskeleton interplay. Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.


Nature microbiology | 2017

Structural basis for λN-dependent processive transcription antitermination

Nelly Said; Ferdinand Krupp; Ekaterina Anedchenko; Karine F. Santos; Olexandr Dybkov; Yong-Heng Huang; Chung-Tien Lee; Bernhard Loll; Elmar Behrmann; Jörg Bürger; Thorsten Mielke; Justus Loerke; Henning Urlaub; Christian M.T. Spahn; Gert Weber; Markus C. Wahl

λN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein λN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a λN–NusA–NusB–NusE–nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and λN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, λN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the λN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that λN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the λN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor ρ and/or obstructing ρ translocation on the transcript.

Collaboration


Dive into the Elmar Behrmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel A. Penczek

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge