Elmar Kal
VU University Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elmar Kal.
Human Movement Science | 2013
Elmar Kal; J. van der Kamp; Han Houdijk
An external focus of attention has been shown to result in superior motor performance compared to an internal focus of attention. This study investigated whether this is due to enhanced levels of movement automatization, as predicted by the constrained action hypothesis (McNevin, Shea, & Wulf, 2003). Thirty healthy participants performed a cyclic one-leg extension-flexion task with both the dominant and non-dominant leg. Focus of attention was manipulated via instructions. The degree of automatization of movement was assessed by measuring dual task costs as well as movement execution parameters (i.e., EMG activity, movement fluency, and movement regularity). Results revealed that an external focus of attention led to significantly better motor performance (i.e., shorter movement duration) than an internal focus. Although dual task costs of the motor task did not differ as a function of attentional focus, cognitive dual task costs were significantly higher when attention was directed internally. An external focus of attention resulted in more fluent and more regular movement execution than an internal focus, whereas no differences were found concerning muscular activity. These results indicate that an external focus of attention results in more automatized movements than an internal focus and, therefore, provide support for the constrained action hypothesis.
PLOS ONE | 2015
Elmar Kal; J. van der Kamp; Han Houdijk; Erny Groet; C.A.M. van Bennekom; E.J.A. Scherder
Dual-task performance is often impaired after stroke. This may be resolved by enhancing patients’ automaticity of movement. This study sets out to test the constrained action hypothesis, which holds that automaticity of movement is enhanced by triggering an external focus (on movement effects), rather than an internal focus (on movement execution). Thirty-nine individuals with chronic, unilateral stroke performed a one-leg-stepping task with both legs in single- and dual-task conditions. Attentional focus was manipulated with instructions. Motor performance (movement speed), movement automaticity (fluency of movement), and dual-task performance (dual-task costs) were assessed. The effects of focus on movement speed, single- and dual-task movement fluency, and dual-task costs were analysed with generalized estimating equations. Results showed that, overall, single-task performance was unaffected by focus (p = .341). Regarding movement fluency, no main effects of focus were found in single- or dual-task conditions (p’s ≥ .13). However, focus by leg interactions suggested that an external focus reduced movement fluency of the paretic leg compared to an internal focus (single-task conditions: p = .068; dual-task conditions: p = .084). An external focus also tended to result in inferior dual-task performance (β = -2.38, p = .065). Finally, a near-significant interaction (β = 2.36, p = .055) suggested that dual-task performance was more constrained by patients’ attentional capacity in external focus conditions. We conclude that, compared to an internal focus, an external focus did not result in more automated movements in chronic stroke patients. Contrary to expectations, trends were found for enhanced automaticity with an internal focus. These findings might be due to patients’ strong preference to use an internal focus in daily life. Future work needs to establish the more permanent effects of learning with different attentional foci on re-automating motor control after stroke.
PLOS ONE | 2016
Elmar Kal; M. Winters; J. van der Kamp; Han Houdijk; Erny Groet; C.A.M. van Bennekom; E.J.A. Scherder
Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts.
Disability and Rehabilitation | 2016
Elmar Kal; Han Houdijk; P. van der Wurff; Erny Groet; C.A.M. van Bennekom; E.J.A. Scherder; J. van der Kamp
Abstract Purpose: Stroke survivors are inclined to consciously control their movements, a phenomenon termed “reinvestment”. Preliminary evidence suggests reinvestment to impair patients’ motor recovery. To investigate this hypothesis, an instrument is needed that can reliably assess reinvestment post-stroke. Therefore, this study aimed to validate the Movement-Specific Reinvestment Scale (MSRS) within inpatient stroke patients. Method: One-hundred inpatient stroke patients (<1 year post-stroke) and 100 healthy peers completed the MSRS, which was translated to Dutch for the study purpose. To assess structural validity, confirmatory factor analysis determined whether the scale measures two latent constructs, as previously reported in healthy adults. Construct validity was determined by testing whether patients had higher reinvestment than controls. Reliability analyses entailed assessment of retest reliability (ICC), internal consistency (Cronbach’s alpha), and minimal detectable change. Results: Both structural and construct validity of the MSRS were supported. Retest reliability and internal consistency indices were acceptable to good. The minimal detectable change was adequate on group level, but considerable on individual level. Conclusions: The MSRS is a valid and reliable tool and suitable to assess the relationship between reinvestment and motor recovery in the first months post-stroke. Eventually, this may help therapists to individualize motor learning interventions based on patients’ reinvestment preferences. Implications for rehabilitation This study showed that the Movement-Specific Reinvestment Scale (MSRS) is a valid and reliable tool to objectify stroke patients’ inclination for conscious motor control. The MSRS may be used to identify stroke patients who are strongly inclined to consciously control their movements, as this disposition may hinder their motor recovery. Eventually, the MSRS may enable clinicians to tailor motor learning interventions to stroke patients’ motor control preferences.
Disability and Rehabilitation | 2018
Elmar Kal; Henrieke van den Brink; Han Houdijk; John van der Kamp; P. H. Goossens; Coen A. M. van Bennekom; E.J.A. Scherder
Abstract Purpose: People without neurological impairments show superior motor learning when they focus on movement effects (external focus) rather than on movement execution itself (internal focus). Despite its potential for neurorehabilitation, it remains unclear to what extent external focus strategies are currently incorporated in rehabilitation post-stroke. Therefore, we observed how physical therapists use attentional focus when treating gait of rehabilitating patients with stroke. Methods: Twenty physical therapist-patient couples from six rehabilitation centers participated. Per couple, one regular gait-training session was video-recorded. Therapists’ statements were classified using a standardized scoring method to determine the relative proportion of internally and externally focused instructions/feedback. Also, we explored associations between therapists’ use of external/internal focus strategies and patients’ focus preference, length of stay, mobility, and cognition. Results: Therapists’ instructions were generally more external while feedback was more internal. Therapists used relatively more externally focused statements for patients with a longer length of stay (B = −0.239, p = 0.013) and for patients who had a stronger internal focus preference (B = −0.930, p = 0.035). Conclusions: Physical therapists used more external focus instructions, but more internally focused feedback. Also, they seem to adapt their attentional focus use to patients’ focus preference and rehabilitation phase. Future research may determine how these factors influence the effectiveness of different attentional foci for motor learning post-stroke. IMPLICATIONS FOR REHABILITATION Physical therapists use a balanced mix of internal focus and external focus instructions and feedback when treating gait of stroke patients. Therapists predominantly used an external focus for patients in later rehabilitation phases, and for patients with stronger internal focus preferences, possibly in an attempt to stimulate more automatic control of movement in these patients. Future research should further explore how a patients’ focus preference and rehabilitation phase influence the effectiveness of different focus strategies. Awaiting further research, we recommend that therapists use both attentional focus strategies, and explore per patient which focus works best on a trial-and-error basis.
Journal of Motor Behavior | 2016
J. E. A. Brocken; Elmar Kal; J. van der Kamp
ABSTRACT The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by childrens age and verbal working memory capacity. Novice 8–9-year old children (n = 30) and 11–12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Childrens verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adults motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school childrens motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of childrens working memory, attentional capacity, or focus preferences require further investigation.
Gait & Posture | 2019
Rafaël Brouwer; Elmar Kal; John van der Kamp; Han Houdijk
BACKGROUND A pronounced discrepancy exists between balance assessments for stroke survivors that are used for clinical purposes and those used for research. Clinical assessments like the Berg Balance Scale generally have stronger ecological validity, whereas research-based assessments like posturography are generally more reliable and precise. We developed a stabilometer balance test (SBT) that aims to couple measurement reliability and precision to clinical meaningfulness by means of a personalized and adaptive test procedure. RESEARCH QUESTION To examine the validity, reliability, and measurement error of the stabilometer balance test in inpatient stroke patients. METHODS In this cross-sectional study, inpatient stroke patients (FAC > 2) were tested on a stabilometer with adjustable resistance to mediolateral movement. A modified staircase procedure was used to adapt task difficulty (i.e., rotational stiffness) on a trial-by-trial basis. The main outcome was the threshold stiffness at which a patient could just stay balanced. Threshold stiffness was correlated with the Berg Balance Scale and posturography measurements to determine concurrent validity (N = 86). Test-retest reliability (N = 23) was analyzed with the Intraclass Correlation Coefficient (ICC). Floor and ceiling effects were assessed. The minimal detectable change was determined at individual and group level. RESULTS Threshold rotational stiffness moderately correlated with the Berg Balance Scale (r=-0.559, p < 0.001), and the absolute path length of the center of pressure during posturography (r=0.348, p = 0.006). Test-retest reliability was good to excellent (ICC=0.869; 95%CI=0.696-0.944). There were no floor or ceiling effects. The minimal detectable change was sufficiently small to detect relevant changes in balance control both on individual and group level. RELEVANCE The SBT is both a valid and reliable balance assessment in stroke patients. It is at least as precise as current clinically preferred measures and does not suffer from ceiling effects. Therefore, it is suitable for use in clinical practice as well as research.
PLOS ONE | 2018
Elmar Kal; Rens Prosée; Marinus Winters; John van der Kamp
Background Implicit motor learning is considered to be particularly effective for learning sports-related motor skills. It should foster movement automaticity and thereby facilitate performance in multitasking and high-pressure environments. To scrutinize this hypothesis, we systematically reviewed all studies that compared the degree of automatization achieved (as indicated by dual-task performance) after implicit compared to explicit interventions for sports-related motor tasks. Methods For this systematic review (CRD42016038249) conventional (MEDLINE, CENTRAL, Embase, PsycINFO, SportDiscus, Web of Science) and grey literature were searched. Two reviewers independently screened reports, extracted data, and performed risk of bias assessment. Implicit interventions of interest were analogy-, errorless-, dual-task-, and external focus learning. Data analysis involved descriptive synthesis of group comparisons on absolute motor dual-task (DT) performance, and motor DT performance relative to single-task motor performance (motor DTCs). Results Of the 4125 reports identified, we included 25 controlled trials that described 39 implicit-explicit group comparisons. Risk of bias was unclear across trials. Most comparisons did not show group differences. Some comparisons showed superior absolute motor DT performance (N = 2), superior motor DTCs (N = 4), or both (N = 3) for the implicit compared to the explicit group. The explicit group showed superior absolute motor DT performance in two comparisons. Conclusions Most comparisons did not show group differences in automaticity. The remaining comparisons leaned more toward a greater degree of movement automaticity after implicit learning than explicit learning. However, due to an overall unclear risk of bias the strength of the evidence is level 3. Motor learning-specific guidelines for design and especially reporting are warranted to further strengthen the evidence and facilitate low-risk-of-bias trials.
Clinical Rehabilitation | 2018
Elmar Kal; J.H.P. Houdijk; J. van der Kamp; Manon Verhoef; Rens Prosée; Erny Groet; Marinus Winters; Coen A. M. van Bennekom; E.J.A. Scherder
Objective: This study aimed to assess if external focus instructions result in greater improvements in motor skill and automaticity compared to internal focus instructions in stroke patients. Design: Double-blind randomized controlled trial. Setting: Inpatient stroke rehabilitation unit. Subjects: A total of 63 stroke patients (Meanage = 59.6 ± 10.7 years; Meandays since stroke = 28.5 ± 16.6; MedianFunctional Ambulation Categories = 4). Interventions: Patients were randomly assigned to an internal (N = 31) or external (N = 32) focus instruction group. Both groups practiced a balance board stabilization task, three times per week, for three weeks. Balance performance was assessed at baseline, and after one and three weeks of practice. Main measures: Primary outcome was the threshold stiffness (Nm/rad) at which patients could stay balanced. Secondary outcomes were patients’ sway (root-mean-square error in degrees) at the baseline threshold stiffness under single- and dual-task conditions, and their performance on the Timed Up and Go Test and Utrecht Scale for Evaluation of Rehabilitation. Results: Both groups achieved similar improvements in threshold stiffness (∆= 27.1 ± 21.1 Nm/rad), and single- (∆= 1.8 ± 2.3° root-mean-square error) and dual-task sway (∆= 1.7 ± 2.1° root-mean-square error) after three weeks of practice. No differences were found in improvements in clinical tests of balance and mobility. Patients with comparatively good balance and sensory function, and low attention capacity showed greatest improvements with external focus instructions. Conclusion: External focus instructions did not result in greater improvement in balance skill in stroke patients compared to internal focus instructions. Results suggest that tailoring instructions to the individual stroke patient may result in optimal improvements in motor skill.
Psychology of Sport and Exercise | 2017
Wouter F. van Ginneken; Jm Poolton; Rsw Masters; Catherine M. Capio; Elmar Kal; John van der Kamp