Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elmar M. Veenendaal is active.

Publication


Featured researches published by Elmar M. Veenendaal.


Science | 2010

Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate

Christian Beer; Markus Reichstein; Enrico Tomelleri; Philippe Ciais; Martin Jung; Nuno Carvalhais; Christian Rödenbeck; M. Altaf Arain; Dennis D. Baldocchi; Gordon B. Bonan; Alberte Bondeau; Alessandro Cescatti; Gitta Lasslop; Anders Lindroth; Mark R. Lomas; Sebastiaan Luyssaert; Hank A. Margolis; Keith W. Oleson; Olivier Roupsard; Elmar M. Veenendaal; Nicolas Viovy; Christopher M. Williams; F. Ian Woodward; Dario Papale

Carbon Cycle and Climate Change As climate change accelerates, it is important to know the likely impact of climate change on the carbon cycle (see the Perspective by Reich). Gross primary production (GPP) is a measure of the amount of CO2 removed from the atmosphere every year to fuel photosynthesis. Beer et al. (p. 834, published online 5 July) used a combination of observation and calculation to estimate that the total GPP by terrestrial plants is around 122 billion tons per year; in comparison, burning fossil fuels emits about 7 billion tons annually. Thirty-two percent of this uptake occurs in tropical forests, and precipitation controls carbon uptake in more than 40% of vegetated land. The temperature sensitivity (Q10) of ecosystem respiratory processes is a key determinant of the interaction between climate and the carbon cycle. Mahecha et al. (p. 838, published online 5 July) now show that the Q10 of ecosystem respiration is invariant with respect to mean annual temperature, independent of the analyzed ecosystem type, with a global mean value for Q10 of 1.6. This level of temperature sensitivity suggests a less-pronounced climate sensitivity of the carbon cycle than assumed by recent climate models. A combination of data and models provides an estimate of how much photosynthesis by all the world’s plants occurs each year. Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year−1) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP’s latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate–carbon cycle process models.


Global Biogeochemical Cycles | 1999

Stability of elemental carbon in a savanna soil

Michael I. Bird; C. Moyo; Elmar M. Veenendaal; J. Lloyd; P. Frost

We have investigated the stability of oxidation-resistant elemental carbon (OREC) in a sandy savanna soil at the Matopos fire trial site, Zimbabwe. The protection of some soil plots from fire for the last 50 years at this site has enabled a comparison of OREC abundances between those plots which have been protected from fire and plots which have continued to be burnt. The total 0–5 cm OREC inventory of the soil protected from fire is estimated to be 2.0±0.5 mg cm−2; approximately half the “natural” OREC inventory at the study site of 3.8±0.5 mg cm−2 (the mean for plots burnt every 1–5 years). The associated half-life for natural OREC loss from the 0–5 cm interval of the protected plots is calculated to be 2000 μm) in the soil being considerably <50 years. These results suggest that at least in well-aerated tropical soil environments, charcoal and OREC can be can be significantly degraded on decadal to centennial timescales. OREC abundance and carbon-isotope data suggest that OREC in coarse particles is progressively degraded into finer particle sizes, with a concomitant increase in resistance to oxidative degradation of OREC in the finer particle sizes due to the progressive loss of more readily degraded OREC. It remains unclear whether the OREC that is degraded is oxidized completely to CO2 and subsequently emitted from the soil, reduced to a sufficiently small particle size to be illuviated to deeper parts of the soil profile, solubilized and lost from the profile as dissolved organic carbon or transmuted into a chemical form which is susceptible to attack by the acid-dichromate reagent. The conclusion that a significant proportion of OREC can undergo natural degradation in well-aerated environments on decadal/centennial timescales suggests that only a fraction of the total production of OREC from biomass burning and fossil fuel combustion is likely to be sequestered in the slow-cycling “geological” carbon reservoir.


Geoderma | 2000

Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos, Zimbabwe)

Michael I. Bird; Elmar M. Veenendaal; C. Moyo; J. Lloyd; P. Frost

Abstract We investigated the effects of changing fire regime on the stocks and isotopic composition of soil organic carbon (SOC) in a tropical savanna ecosystem at Matopos, Zimbabwe. Vegetation plots from both sandy and clay-rich soil types at this location have been subjected to fire frequencies ranging from annual burn to complete protection for the last 50 years. Gross variations in 0–5 cm SOC stocks and the δ 13 C value of SOC were predominantly related to soil texture, with carbon densities at the sandy sites being consistently 35–50% lower than those at comparable clay sites. Average 0–5 cm carbon densities for all the burnt plots were approximately 100 mg/cm 2 and 50 mg/cm 2 , at the clay site and the sandy site, respectively. In both cases, lower fire frequencies had resulted in a ∼10% increase, while higher fire frequencies had resulted in a ∼10% decrease from these average values. Plots from which fire had been excluded experienced a 40% to 50% increase in carbon stocks in the 0–5 cm interval, compared with the average for the burned plots. There was a linear relationship between carbon density and δ 13 C value at both sandy and clay sites. This is controlled by the rate of delivery of C 3 - and C 4 -derived carbon to the SOC pool, by the differences in residence time for C 3 - and C 4 -derived carbon in the SOC pool (in turn controlled largely by fire frequency), and by soil texture. The distribution of carbon and 13 C between size fractions is also controlled by soil texture and fire frequency. Increasing fire frequency results in a relative increase in fine particulate SOC and an increase in the δ 13 C value of SOC in all size fractions. Soil texture, on the other hand, controls the magnitude of the increases in both the abundance and the δ 13 C value of SOC in all size fractions.


Plant Cell and Environment | 2010

Co‐limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands

T.F. Domingues; Patrick Meir; Ted R. Feldpausch; Gustavo Saiz; Elmar M. Veenendaal; Franziska Schrodt; Michael I. Bird; Gloria Djagbletey; Fidele Hien; Halidou Compaore; Adama Diallo; John Grace; Jon Lloyd

Photosynthetic leaf traits were determined for savanna and forest ecosystems in West Africa, spanning a large range in precipitation. Standardized major axis fits revealed important differences between our data and reported global relationships. Especially for sites in the drier areas, plants showed higher photosynthetic rates for a given N or P when compared with relationships from the global data set. The best multiple regression for the pooled data set estimated V(cmax) and J(max) from N(DW) and S. However, the best regression for different vegetation types varied, suggesting that the scaling of photosynthesis with leaf traits changed with vegetation types. A new model is presented representing independent constraints by N and P on photosynthesis, which can be evaluated with or without interactions with S. It assumes that limitation of photosynthesis will result from the least abundant nutrient, thereby being less sensitive to the allocation of the non-limiting nutrient to non-photosynthetic pools. The model predicts an optimum proportionality for N and P, which is distinct for V(cmax) and J(max) and inversely proportional to S. Initial tests showed the model to predict V(cmax) and J(max) successfully for other tropical forests characterized by a range of different foliar N and P concentrations.


Ecology | 2007

SOIL FEEDBACK OF EXOTIC SAVANNA GRASS RELATES TO PATHOGEN ABSENCE AND MYCORRHIZAL SELECTIVITY

W.H. van der Putten; George A. Kowalchuk; E.P. Brinkman; G. T. A. Doodeman; R. M. van der Kaaij; Andre Kamp; F.B.J. Menting; Elmar M. Veenendaal

Enemy release of exotic plants from soil pathogens has been tested by examining plant-soil feedback effects in repetitive growth cycles. However, positive soil feedback may also be due to enhanced benefit from the local arbuscular mycorrhizal fungi (AMF). Few studies actually have tested pathogen effects, and none of them did so in arid savannas. In the Kalahari savanna in Botswana, we compared the soil feedback of the exotic grass Cenchrus biflorus with that of two dominant native grasses, Eragrostis lehmanniana and Aristida meridionalis. The exotic grass had neutral to positive soil feedback, whereas both native grasses showed neutral to negative feedback effects. Isolation and testing of root-inhabiting fungi of E. lehmanniana yielded two host-specific pathogens that did not influence the exotic C. biflorus or the other native grass, A. meridionalis. None of the grasses was affected by the fungi that were isolated from the roots of the exotic C. biflorus. We isolated and compared the AMF community of the native and exotic grasses by polymerase chain reaction-denaturing gradient gel elecrophoresis (PCR-DGGE), targeting AMF 18S rRNA. We used roots from monospecific field stands and from plants grown in pots with mixtures of soils from the monospecific field stands. Three-quarters of the root samples of the exotic grass had two nearly identical sequences, showing 99% similarity with Glomus versiforme. The two native grasses were also associated with distinct bands, but each of these bands occurred in only a fraction of the root samples. The native grasses contained a higher diversity of AMF bands than the exotic grass. Canonical correspondence analyses of the AMF band patterns revealed almost as much difference between the native and exotic grasses as between the native grasses. In conclusion, our results support the hypothesis that release from soil-borne enemies may facilitate local abundance of exotic plants, and we provide the first evidence that these processes may occur in arid savanna ecosystems. Pathogenicity tests implicated the involvement of soil pathogens in the soil feedback responses, and further studies should reveal the functional consequences of the observed high infection with a low diversity of AMF in the roots of exotic plants.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The uncertain climate footprint of wetlands under human pressure

A.M.R. Petrescu; Annalea Lohila; Juha-Pekka Tuovinen; Dennis D. Baldocchi; Ankur R. Desai; Nigel T. Roulet; Timo Vesala; A. J. Dolman; Walter C. Oechel; Barbara Marcolla; Thomas Friborg; Janne Rinne; Jaclyn Hatala Matthes; Lutz Merbold; Ana Meijide; Gerard Kiely; Matteo Sottocornola; Torsten Sachs; Donatella Zona; Andrej Varlagin; Derrick Y.F. Lai; Elmar M. Veenendaal; Frans-Jan Parmentier; U. Skiba; Magnus Lund; A. Hensen; Jacobus van Huissteden; Lawrence B. Flanagan; Narasinha J. Shurpali; Thomas Grünwald

Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate. Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Plant Ecology & Diversity | 2013

On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions

Mireia Torello-Raventos; Ted R. Feldpausch; Elmar M. Veenendaal; Franziska Schrodt; Gustavo Saiz; Tomas F. Domingues; Gloria Djagbletey; Andrew J. Ford; J.E. Kemp; Beatriz Schwantes Marimon; Ben Hur Marimon Junior; Eddie Lenza; J. A. Ratter; Leandro Maracahipes; Denise Sasaki; Bonaventure Sonké; Louis Zapfack; Hermann Taedoumg; Daniel Villarroel; Michael Schwarz; Carlos A. Quesada; F. Yoko Ishida; G. B. Nardoto; Kofi Affum-Baffoe; L. Arroyo; David M. J. S. Bowman; Halidou Compaore; Kalu J.E. Davies; Adama Diallo; Nikolaos M. Fyllas

Background: There is no generally agreed classification scheme for the many different vegetation formation types occurring in the tropics. This hinders cross-continental comparisons and causes confusion as words such as ‘forest’ and ‘savanna’ have different meanings to different people. Tropical vegetation formations are therefore usually imprecisely and/or ambiguously defined in modelling, remote sensing and ecological studies. Aims: To integrate observed variations in tropical vegetation structure and floristic composition into a single classification scheme. Methods: Using structural and floristic measurements made on three continents, discrete tropical vegetation groupings were defined on the basis of overstorey and understorey structure and species compositions by using clustering techniques. Results: Twelve structural groupings were identified based on height and canopy cover of the dominant upper stratum and the extent of lower-strata woody shrub cover and grass cover. Structural classifications did not, however, always agree with those based on floristic composition, especially for plots located in the forest–savanna transition zone. This duality is incorporated into a new tropical vegetation classification scheme. Conclusions: Both floristics and stand structure are important criteria for the meaningful delineation of tropical vegetation formations, especially in the forest/savanna transition zone. A new tropical vegetation classification scheme incorporating this information has been developed.


Philosophical Transactions of the Royal Society B | 2015

Experimental illumination of natural habitat - an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition

Kamiel Spoelstra; Roy H. A. van Grunsven; Maurice Donners; Phillip Gienapp; Martinus E. Huigens; Roy Slaterus; Frank Berendse; Marcel E. Visser; Elmar M. Veenendaal

Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.


Insect Conservation and Diversity | 2015

Artificial light at night inhibits mating in a Geometrid moth

Koert G. van Geffen; Emiel van Eck; Rens A. de Boer; Roy H. A. van Grunsven; Lucia Salis; Frank Berendse; Elmar M. Veenendaal

Levels of artificial night lighting are increasing rapidly worldwide, subjecting nocturnal organisms to a major change in their environment. Many moth species are strongly attracted to sources of artificial night lighting, with potentially severe, yet poorly studied, consequences for development, reproduction and inter/intra‐specific interactions. Here, we present results of a field‐based experiment where we tested effects of various types of artificial lighting on mating in the winter moth (Operophtera brumata, Lepidoptera: Geometridae). We illuminated trunks of oak trees with green, white, red or no artificial LED light at night, and caught female O. brumata on these trunks using funnel traps. The females were dissected to check for the presence of a spermatophore, a sperm package that is delivered by males to females during mating. We found a strong reduction in the number of females on the illuminated trunks, indicating artificial light inhibition of activity. Furthermore, artificial light inhibited mating: 53% of females caught on non‐illuminated trunks had mated, whereas only 13%, 16% and 28% of the females that were caught on green, white and red light illuminated trunks had mated respectively. A second experiment showed that artificial night lighting reduced the number of males that were attracted to a synthetic O. brumata pheromone lure. This effect was strongest under red light and mildest under green light. This study provides, for the first time, field‐based evidence that artificial night lighting disrupts reproductive behaviour of moths, and that reducing short wavelength radiation only partly mitigates these negative effects.


Ecology and Evolution | 2014

Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth

Koert G. van Geffen; Roy H. A. van Grunsven; Jasper van Ruijven; Frank Berendse; Elmar M. Veenendaal

Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.

Collaboration


Dive into the Elmar M. Veenendaal's collaboration.

Top Co-Authors

Avatar

Frank Berendse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Roy H. A. van Grunsven

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P. S. Kroon

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar

Jon Lloyd

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

A. Hensen

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Almut Arneth

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. P. Schrier-Uijl

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge