Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elmar Rueckert is active.

Publication


Featured researches published by Elmar Rueckert.


international conference on robotics and automation | 2015

Learning inverse dynamics models with contacts

Roberto Calandra; Serena Ivaldi; Marc Peter Deisenroth; Elmar Rueckert; Jan Peters

In whole-body control, joint torques and external forces need to be estimated accurately. In principle, this can be done through pervasive joint-torque sensing and accurate system identification. However, these sensors are expensive and may not be integrated in all links. Moreover, the exact position of the contact must be known for a precise estimation. If contacts occur on the whole body, tactile sensors can estimate the contact location, but this requires a kinematic spatial calibration, which is prone to errors. Accumulating errors may have dramatic effects on the system identification. As an alternative to classical model-based approaches we propose a data-driven mixture-of-experts learning approach using Gaussian processes. This model predicts joint torques directly from raw data of tactile and force/torque sensors. We compare our approach to an analytic model-based approach on real world data recorded from the humanoid iCub. We show that the learned model accurately predicts the joint torques resulting from contact forces, is robust to changes in the environment and outperforms existing dynamic models that use of force/ torque sensor data.


international conference on robotics and automation | 2015

Extracting low-dimensional control variables for movement primitives

Elmar Rueckert; Jan Mundo; Alexandros Paraschos; Jan Peters; Gerhard Neumann

Movement primitives (MPs) provide a powerful framework for data driven movement generation that has been successfully applied for learning from demonstrations and robot reinforcement learning. In robotics we often want to solve a multitude of different, but related tasks. As the parameters of the primitives are typically high dimensional, a common practice for the generalization of movement primitives to new tasks is to adapt only a small set of control variables, also called meta parameters, of the primitive. Yet, for most MP representations, the encoding of these control variables is pre-coded in the representation and can not be adapted to the considered tasks. In this paper, we want to learn the encoding of task-specific control variables also from data instead of relying on fixed meta-parameter representations. We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable model for probabilistic movement primitives (ProMPs), which is a recent movement primitive representation. We show on two real robot datasets that ProMPs based on HBMs outperform standard ProMPs in terms of generalization and learning from a small amount of data and also allows for an intuitive analysis of the movement. We also extend our HBM by a mixture model, such that we can model different movement types in the same dataset.


Scientific Reports | 2016

Recurrent Spiking Networks Solve Planning Tasks.

Elmar Rueckert; David Kappel; Daniel Tanneberg; Dejan Pecevski; Jan Peters

A recurrent spiking neural network is proposed that implements planning as probabilistic inference for finite and infinite horizon tasks. The architecture splits this problem into two parts: The stochastic transient firing of the network embodies the dynamics of the planning task. With appropriate injected input this dynamics is shaped to generate high-reward state trajectories. A general class of reward-modulated plasticity rules for these afferent synapses is presented. The updates optimize the likelihood of getting a reward through a variant of an Expectation Maximization algorithm and learning is guaranteed to convergence to a local maximum. We find that the network dynamics are qualitatively similar to transient firing patterns during planning and foraging in the hippocampus of awake behaving rats. The model extends classical attractor models and provides a testable prediction on identifying modulating contextual information. In a real robot arm reaching and obstacle avoidance task the ability to represent multiple task solutions is investigated. The neural planning method with its local update rules provides the basis for future neuromorphic hardware implementations with promising potentials like large data processing abilities and early initiation of strategies to avoid dangerous situations in robot co-worker scenarios.


ieee-ras international conference on humanoid robots | 2014

Robust policy updates for stochastic optimal control

Elmar Rueckert; Max Mindt; Jan Peters; Gerhard Neumann

For controlling high-dimensional robots, most stochastic optimal control algorithms use approximations of the system dynamics and of the cost function (e.g., using linearizations and Taylor expansions). These approximations are typically only locally correct, which might cause instabilities in the greedy policy updates, lead to oscillations or the algorithms diverge. To overcome these drawbacks, we add a regularization term to the cost function that punishes large policy update steps in the trajectory optimization procedure. We applied this concept to the Approximate Inference Control method (AICO), where the resulting algorithm guarantees convergence for uninformative initial solutions without complex hand-tuning of learning rates. We evaluated our new algorithm on two simulated robotic platforms. A robot arm with five joints was used for reaching multiple targets while keeping the roll angle constant. On the humanoid robot Nao, we show how complex skills like reaching and balancing can be inferred from desired center of gravity or end effector coordinates.


international conference on robotics and automation | 2016

Learning soft task priorities for control of redundant robots

Valerio Modugno; Gerard Neumann; Elmar Rueckert; Giuseppe Oriolo; Jan Peters; Serena Ivaldi

One of the key problems in planning and control of redundant robots is the fast generation of controls when multiple tasks and constraints need to be satisfied. In the literature, this problem is classically solved by multi-task prioritized approaches, where the priority of each task is determined by a weight function, describing the task strict/soft priority. In this paper, we propose to leverage machine learning techniques to learn the temporal profiles of the task priorities, represented as parametrized weight functions: we automatically determine their parameters through a stochastic optimization procedure. We show the effectiveness of the proposed method on a simulated 7 DOF Kuka LWR and both a simulated and a real Kinova Jaco arm. We compare the performance of our approach to a state-of-the-art method based on soft task prioritization, where the task weights are typically hand-tuned.


intelligent robots and systems | 2015

Model-free Probabilistic Movement Primitives for physical interaction

Alexandros Paraschos; Elmar Rueckert; Jan Peters; Gerhard Neumann

Physical interaction in robotics is a complex problem that requires not only accurate reproduction of the kinematic trajectories but also of the forces and torques exhibited during the movement. We base our approach on Movement Primitives (MP), as MPs provide a framework for modelling complex movements and introduce useful operations on the movements, such as generalization to novel situations, time scaling, and others. Usually, MPs are trained with imitation learning, where an expert demonstrates the trajectories. However, MPs used in physical interaction either require additional learning approaches, e.g., reinforcement learning, or are based on handcrafted solutions. Our goal is to learn and generate movements for physical interaction that are learned with imitation learning, from a small set of demonstrated trajectories. The Probabilistic Movement Primitives (ProMPs) framework is a recent MP approach that introduces beneficial properties, such as combination and blending of MPs, and represents the correlations present in the movement. The ProMPs provides a variable stiffness controller that reproduces the movement but it requires a dynamics model of the system. Learning such a model is not a trivial task, and, therefore, we introduce the model-free ProMPs, that are learning jointly the movement and the necessary actions from a few demonstrations. We derive a variable stiffness controller analytically. We further extent the ProMPs to include force and torque signals, necessary for physical interaction. We evaluate our approach in simulated and real robot tasks.


Scientific Reports | 2016

Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

Elmar Rueckert; Jernej Čamernik; Jan Peters; Jan Babič

Human motor skill learning is driven by the necessity to adapt to new situations. While supportive contacts are essential for many tasks, little is known about their impact on motor learning. To study the effect of contacts an innovative full-body experimental paradigm was established. The task of the subjects was to reach for a distant target while postural stability could only be maintained by establishing an additional supportive hand contact. To examine adaptation, non-trivial postural perturbations of the subjects’ support base were systematically introduced. A novel probabilistic trajectory model approach was employed to analyze the correlation between the motions of both arms and the trunk. We found that subjects adapted to the perturbations by establishing target dependent hand contacts. Moreover, we found that the trunk motion adapted significantly faster than the motion of the arms. However, the most striking finding was that observations of the initial phase of the left arm or trunk motion (100–400 ms) were sufficient to faithfully predict the complete movement of the right arm. Overall, our results suggest that the goal-directed arm movements determine the supportive arm motions and that the motion of heavy body parts adapts faster than the light arms.


robot and human interactive communication | 2016

A low-cost sensor glove with vibrotactile feedback and multiple finger joint and hand motion sensing for human-robot interaction

P. Weber; Elmar Rueckert; Roberto Calandra; Jan Peters; Philipp Beckerle

Sensor gloves are widely adopted input devices for several kinds of human-robot interaction applications. Existing glove concepts differ in features and design, but include limitations concerning the captured finger kinematics, position/orientation sensing, wireless operation, and especially economical issues. This paper presents the DAGLOVE which addresses the mentioned limitations with a low-cost design (ca. 300 €). This new sensor glove allows separate measurements of proximal and distal finger joint motions as well as position/orientation detection with an inertial measurement unit (IMU). Those sensors and tactile feedback induced by coin vibration motors at the fingertips are integrated within a wireless, easy-to-use, and open-source system. The design and implementation of hardware and software as well as proof-of-concept experiments are presented. An experimental evaluation of the sensing capabilities shows that proximal and distal finger motions can be acquired separately and that hand position/orientation can be tracked. Further, teleoperation of the iCub humanoid robot is investigated as an exemplary application to highlight the potential of the extended low-cost glove in human-robot interaction.


ieee-ras international conference on humanoid robots | 2016

Model estimation and control of compliant contact normal force

Morteza Azad; Valerio Ortenzi; Hsiu-Chin Lin; Elmar Rueckert; Michael Mistry

This paper proposes a method to realize desired contact normal forces between humanoids and their compliant environment. By using contact models, desired contact forces are converted to desired deformations of compliant surfaces. To achieve desired forces, deformations are controlled by controlling the contact point positions. Parameters of contact models are assumed to be known or estimated using the approach described in this paper. The proposed methods for estimating the contact parameters and controlling the contact normal force are implemented on a LWR KUKA IV arm. To verify both methods, experiments are performed with the KUKA arm while its end-effector is in contact with two different soft objects.


Archive | 2016

Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities

Jan Kohlschuetter; Jan Peters; Elmar Rueckert

Identifying movement abnormalities from raw Electromyography (EMG) data requires three steps that are the data pre-processing, the feature extraction and training a classifier. As EMG data shows large variation (even for consecutive trials in a single subject) probabilistic classifiers like naive Bayes or probabilistic support vector machines have been proposed. The used feature representations (e.g., principal components analysis, non negative matrix factorization, wavelet transformation) however, can not capture the variation. Here, we propose a fully Bayesian approach where both, the features and the classifier, are probabilistic models. The generative model reproduces the observed variance in the EMG data, provides an estimate of the reliability of the predictions and can be applied in combination with dimensionality reduction techniques such as PCA and NMF. In first tests, we found that these probabilistic extensions outperforms classical approaches in terms of the prediction of knee abnormalities from few samples with a performance of 86 percent of correctly classified abnormalities.

Collaboration


Dive into the Elmar Rueckert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Tanneberg

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandros Paraschos

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Roberto Calandra

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelhak M. Zoubir

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Adrian Šošić

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Alexandres Paraschos

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Gerard Neumann

Technische Universität Darmstadt

View shared research outputs
Researchain Logo
Decentralizing Knowledge