Elmar Wolf
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elmar Wolf.
Nature Methods | 2008
Berthold Kastner; Niels Fischer; Monika M. Golas; Bjoern Sander; Prakash Dube; Daniel Boehringer; Klaus Hartmuth; Jochen Deckert; Florian Hauer; Elmar Wolf; Hannes Uchtenhagen; Henning Urlaub; Franz Herzog; Jan-Michael Peters; Dietmar Poerschke; Reinhard Lührmann; Holger Stark
We developed a method, named GraFix, that considerably improves sample quality for structure determination by single-particle electron cryomicroscopy (cryo-EM). GraFix uses a glycerol gradient centrifugation step in which the complexes are centrifuged into an increasing concentration of a chemical fixation reagent to prevent aggregation and to stabilize individual macromolecules. The method can be used to prepare samples for negative-stain, cryo-negative-stain and, particularly, unstained cryo-EM.
Nature | 2014
Susanne Walz; Francesca Lorenzin; Jennifer P. Morton; Katrin E. Wiese; Björn von Eyss; Steffi Herold; Lukas Rycak; Hélène Dumay-Odelot; Saadia A. Karim; Marek Bartkuhn; Frederik Roels; Torsten Wüstefeld; Matthias Fischer; Martin Teichmann; Lars Zender; Chia-Lin Wei; Owen J. Sansom; Elmar Wolf; Martin Eilers
In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.
Molecular and Cellular Biology | 2009
Nadine Herold; Cindy L. Will; Elmar Wolf; Berthold Kastner; Henning Urlaub; Reinhard Lührmann
ABSTRACT Comprehensive proteomics analyses of spliceosomal complexes are currently limited to those in humans, and thus, it is unclear to what extent the spliceosomes highly complex composition and compositional dynamics are conserved among metazoans. Here we affinity purified Drosophila melanogaster spliceosomal B and C complexes formed in Kc cell nuclear extract. Mass spectrometry revealed that their composition is highly similar to that of human B and C complexes. Nonetheless, a number of Drosophila-specific proteins were identified, suggesting that there may be novel factors contributing specifically to splicing in flies. Protein recruitment and release events during the B-to-C transition were also very similar in both organisms. Electron microscopy of Drosophila B complexes revealed a high degree of structural similarity with human B complexes, indicating that higher-order interactions are also largely conserved. A comparison of Drosophila spliceosomes formed on a short versus long intron revealed only small differences in protein composition but, nonetheless, clear structural differences under the electron microscope. Finally, the characterization of affinity-purified Drosophila mRNPs indicated that exon junction complex proteins are recruited in a splicing-dependent manner during C complex formation. These studies provide insights into the evolutionarily conserved composition and structure of the metazoan spliceosome, as well as its compositional dynamics during catalytic activation.
Molecular and Cellular Biology | 2011
Dmitry E. Agafonov; Jochen Deckert; Elmar Wolf; Peter Odenwälder; Sergey Bessonov; Cindy L. Will; Henning Urlaub; Reinhard Lührmann
ABSTRACT More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, Bact, and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, Bact, and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosomes compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.
Molecular and Cellular Biology | 2010
Michael Grote; Elmar Wolf; Cindy L. Will; Ira Lemm; Dmitry E. Agafonov; Adrian Schomburg; Wolfgang Fischle; Henning Urlaub; Reinhard Lührmann
ABSTRACT Protein complexes containing Prp19 play a central role during catalytic activation of the spliceosome, and Prp19 and its related proteins are major components of the spliceosomes catalytic core RNP. To learn more about the spatial organization of the human Prp19 (hPrp19)/CDC5L complex, which is comprised of hPrp19, CDC5L, PRL1, AD002, SPF27, CTNNBL1, and HSP73, we purified native hPrp19/CDC5L complexes from HeLa cells stably expressing FLAG-tagged AD002 or SPF27. Stoichiometric analyses indicated that, like Saccharomyces cerevisiae NTC (nineteen complex), the human Prp19/CDC5L complex contains four copies of hPrp19. Salt treatment identified a stable core comprised of CDC5L, hPrp19, PRL1, and SPF27. Protein-protein interaction studies revealed that SPF27 directly interacts with each component of the hPrp19/CDC5L complex core and also elucidated several additional, previously unknown interactions between hPrp19/CDC5L complex components. Limited proteolysis of the hPrp19/CDC5L complex revealed a protease-resistant complex comprised of SPF27, the C terminus of CDC5L, and the N termini of PRL1 and hPrp19. Under the electron microscope, purified hPrp19/CDC5L complexes exhibit an elongated, asymmetric shape with a maximum dimension of ∼20 nm. Our findings not only elucidate the molecular organization of the hPrp19/CDC5L complex but also provide insights into potential protein-protein interactions at the core of the catalytically active spliceosome.
Trends in Cell Biology | 2015
Elmar Wolf; Charles Y. Lin; Martin Eilers; David Levens
Myc deregulation is a hallmark oncogenic event where overexpression of the transcription factor gives rise to numerous tumorigenic phenotypes. The complex consequences of Myc deregulation have prevented clear mechanistic interpretations of its function. A synthesis of recent experimental observations offers a consensus on the direct transcriptional function of Myc: when overexpressed, Myc broadly engages the established euchromatic cis-regulatory landscape of the cell, where the factor generally amplifies transcription. The level of Myc binding at target genes and the transcriptional output are differentially modulated by additional regulators, including Miz1. Targeting Myc oncogenic activity will require an understanding of whether amplification promotes tumorigenesis and the consequences of amplification in tumors adapted to oncogenic Myc.
Nature Structural & Molecular Biology | 2008
Irina Häcker; Bjoern Sander; Monika M. Golas; Elmar Wolf; Elif Karagöz; Berthold Kastner; Holger Stark; Patrizia Fabrizio; Reinhard Lührmann
The U4/U6-U5 tri–small nuclear ribonucleoprotein (snRNP) is a major, evolutionarily highly conserved spliceosome subunit. Unwinding of its U4/U6 snRNA duplex is a central event of spliceosome activation that requires several components of the U5 portion of the tri-snRNP, including the RNA helicase Brr2, Prp8 and the GTPase Snu114. Here we report the EM projection structure of the Saccharomyces cerevisiae tri-snRNP. It shows a modular organization comprising three extruding domains that contact one another in its central portion. We have visualized genetically tagged tri-snRNP proteins by EM and show here that U4/U6 snRNP forms a domain termed the arm. Conversely, a separate head domain adjacent to the arm harbors Brr2, whereas Prp8 and the GTPase Snu114 are located centrally. The head and arm adopt variable relative positions. This molecular organization and dynamics suggest possible scenarios for structural events during catalytic activation.
Cancer Discovery | 2014
Sandra Baumgart; Nai Ming Chen; Jens T. Siveke; Alexander König; Jin San Zhang; Shiv K. Singh; Elmar Wolf; Marek Bartkuhn; Irene Esposito; Elisabeth Heßmann; Johanna Reinecke; Julius Nikorowitsch; Marius Brunner; Garima Singh; Martin E. Fernandez-Zapico; Thomas C. Smyrk; William R. Bamlet; Martin Eilers; Albrecht Neesse; Thomas M. Gress; Daniel D. Billadeau; David A. Tuveson; Raul Urrutia; V Ellenrieder
UNLABELLED Cancer-associated inflammation is a molecular key feature in pancreatic ductal adenocarcinoma. Oncogenic KRAS in conjunction with persistent inflammation is known to accelerate carcinogenesis, although the underlying mechanisms remain poorly understood. Here, we outline a novel pathway whereby the transcription factors NFATc1 and STAT3 cooperate in pancreatic epithelial cells to promote Kras(G12D)-driven carcinogenesis. NFATc1 activation is induced by inflammation and itself accelerates inflammation-induced carcinogenesis in Kras(G12D) mice, whereas genetic or pharmacologic ablation of NFATc1 attenuates this effect. Mechanistically, NFATc1 complexes with STAT3 for enhancer-promoter communications at jointly regulated genes involved in oncogenesis, for example, Cyclin, EGFR and WNT family members. The NFATc1-STAT3 cooperativity is operative in pancreatitis-mediated carcinogenesis as well as in established human pancreatic cancer. Together, these studies unravel new mechanisms of inflammatory-driven pancreatic carcinogenesis and suggest beneficial effects of chemopreventive strategies using drugs that are currently available for targeting these factors in clinical trials. SIGNIFICANCE Our study points to the existence of an oncogenic NFATc1-STAT3 cooperativity that mechanistically links inflammation with pancreatic cancer initiation and progression. Because NFATc1-STAT3 nucleoprotein complexes control the expression of gene networks at the intersection of inflammation and cancer, our study has significant relevance for potentially managing pancreatic cancer and other inflammatory-driven malignancies.
The EMBO Journal | 2009
Elmar Wolf; Berthold Kastner; Jochen Deckert; Christian Merz; Holger Stark; Reinhard Lührmann
In recent years, electron microscopy (EM) has allowed the generation of three‐dimensional structure maps of several spliceosomal complexes. However, owing to their limited resolution, little is known at present about the location of the pre‐mRNA, the spliceosomal small nuclear ribonucleoprotein or the spliceosomes active site within these structures. In this work, we used EM to localise the intron and the 5′ and 3′ exons of a model pre‐mRNA, as well as the U2‐associated protein SF3b155, in pre‐catalytic spliceosomes (i.e. B complexes) by labelling them with an antibody that bears colloidal gold. Our data reveal that the intron and both exons, together with SF3b155, are located in specific regions of the head domain of the B complex. These results represent an important first step towards identifying functional sites in the spliceosome. The gold‐labelling method adopted here can be applied to other spliceosomal complexes and may thus contribute significantly to our overall understanding of the pre‐mRNA splicing process.
eLife | 2016
Francesca Lorenzin; Uwe Benary; Apoorva Baluapuri; Susanne Walz; Lisa Anna Jung; Björn von Eyss; Caroline Kisker; Jana Wolf; Martin Eilers; Elmar Wolf
Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. DOI: http://dx.doi.org/10.7554/eLife.15161.001