Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elmer Santos is active.

Publication


Featured researches published by Elmer Santos.


Blood | 2011

Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias

Renier J. Brentjens; Isabelle Riviere; Jae H. Park; Marco L. Davila; Xiuyan Wang; Jolanta Stefanski; Clare Taylor; Raymond Yeh; Shirley Bartido; Orianna Borquez-Ojeda; Malgorzata Olszewska; Yvette Bernal; Hollie J. Pegram; Mark Przybylowski; Daniel Hollyman; Yelena Usachenko; Domenick Pirraglia; James Hosey; Elmer Santos; Elizabeth Halton; P. Maslak; David A. Scheinberg; Joseph G. Jurcic; Mark L. Heaney; Glenn Heller; Mark G. Frattini; Michel Sadelain

We report the findings from the first 10 patients with chemotherapy-refractory chronic lymphocytic leukemia (CLL) or relapsed B-cell acute lymphoblastic leukemia (ALL) we have enrolled for treatment with autologous T cells modified to express 19-28z, a second-generation chimeric antigen (Ag) receptor specific to the B-cell lineage Ag CD19. Eight of the 9 treated patients tolerated 19-28z(+) T-cell infusions well. Three of 4 evaluable patients with bulky CLL who received prior conditioning with cyclophosphamide exhibited either a significant reduction or a mixed response in lymphadenopathy without concomitant development of B-cell aplasia. In contrast, one patient with relapsed ALL who was treated in remission with a similar T-cell dose developed a predicted B-cell aplasia. The short-term persistence of infused T cells was enhanced by prior cyclophosphamide administration and inversely proportional to the peripheral blood tumor burden. Further analyses showed rapid trafficking of modified T cells to tumor and retained ex vivo cytotoxic potential of CD19-targeted T cells retrieved 8 days after infusion. We conclude that this adoptive T-cell approach is promising and more likely to show clinical benefit in the setting of prior conditioning chemotherapy and low tumor burden or minimal residual disease. These studies are registered at www.clinicaltrials.org as #NCT00466531 (CLL protocol) and #NCT01044069 (B-ALL protocol).


Nature Medicine | 2003

Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15

Renier J. Brentjens; Jean Baptiste Latouche; Elmer Santos; Francesc Marti; Michael C. Gong; Clay Lyddane; Philip D. King; Steven M. Larson; Mark Weiss; Isabelle Riviere; Michel Sadelain

The genetic transfer of antigen receptors provides a means to rapidly generate autologous tumor-reactive T lymphocytes. However, recognition of tumor antigens by cytotoxic T cells is only one step towards effective cancer immunotherapy. Other crucial biological prerequisites must be fulfilled to expand tumor-reactive T cells that retain a functional phenotype, including in vivo cytolytic activity and the ability to travel to tumor sites without prematurely succumbing to apoptosis. We show that these requirements are met by expanding peripheral blood T cells genetically targeted to the CD19 antigen in the presence of CD80 and interleukin-15 (IL-15). T cells expanded in the presence of IL-15 uniquely persist in tumor-bearing severe combined immunodeficiency (SCID)-Beige mice and eradicate disseminated intramedullary tumors. Their anti-tumor activity is further enhanced by in vivo co-stimulation. In addition, transduced T cells from patients with chronic lymphocytic leukemia (CLL) effectively lyse autologous tumor cells. These findings strongly support the clinical feasibility of this therapeutic strategy.


Clinical Cancer Research | 2007

Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts

Renier J. Brentjens; Elmer Santos; Yan Nikhamin; Raymond Yeh; Maiko Matsushita; Krista M.D. La Perle; Alfonso Quintás-Cardama; Steven M. Larson; Michel Sadelain

Purpose: Human T cells targeted to the B cell–specific CD19 antigen through retroviral-mediated transfer of a chimeric antigen receptor (CAR), termed 19z1, have shown significant but partial in vivo antitumor efficacy in a severe combined immunodeficient (SCID)-Beige systemic human acute lymphoblastic leukemia (NALM-6) tumor model. Here, we investigate the etiologies of treatment failure in this model and design approaches to enhance the efficacy of this adoptive strategy. Experimental Design: A panel of modified CD19-targeted CARs designed to deliver combined activating and costimulatory signals to the T cell was generated and tested in vitro to identify an optimal second-generation CAR. Antitumor efficacy of T cells expressing this optimal costimulatory CAR, 19-28z, was analyzed in mice bearing systemic costimulatory ligand-deficient NALM-6 tumors. Results: Expression of the 19-28z CAR, containing the signaling domain of the CD28 receptor, enhanced systemic T-cell antitumor activity when compared with 19z1 in treated mice. A treatment schedule of 4 weekly T-cell injections, designed to prolong in vivo T-cell function, further improved long-term survival. Bioluminescent imaging of tumor in treated mice failed to identify a conserved site of tumor relapse, consistent with successful homing by tumor-specific T cells to systemic sites of tumor involvement. Conclusions: Both in vivo costimulation and repeated administration enhance eradication of systemic tumor by genetically targeted T cells. The finding that modifications in CAR design as well as T-cell dosing allowed for the complete eradication of systemic disease affects the design of clinical trials using this treatment strategy.


Journal of Clinical Investigation | 2011

Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation

Debyani Chakravarty; Elmer Santos; Mabel Ryder; Jeffrey A. Knauf; Xiao Hui Liao; Brian L. West; Gideon Bollag; Richard Kolesnick; Tin Htwe Thin; Neal Rosen; Pat Zanzonico; Steven M. Larson; Samuel Refetoff; Ronald Ghossein; James A. Fagin

Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAF(V600E)) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAF(V600E), the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAF(V600E) expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAF(V600E) rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAF(V600E) mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications.


Nature Medicine | 2009

Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase

Elmer Santos; Raymond Yeh; James Lee; Yan Nikhamin; Blesida Punzalan; Blesserene Punzalan; Krista M.D. La Perle; Steven M. Larson; Michel Sadelain; Renier J. Brentjens

We developed a new approach to bioluminescent T cell imaging using a membrane-anchored form of the Gaussia luciferase (GLuc) enzyme, termed extGLuc, which we could stably express in both mouse and human primary T cells. In vitro, extGLuc+ cells emitted significantly higher bioluminescent signal when compared to cells expressing GLuc, Renilla luciferase (RLuc) or membrane-anchored RLuc (extRLuc). In vivo, mouse extGLuc+ T cells showed higher bioluminescent signal when compared to GLuc+ and RLuc+ T cells. Application of this imaging approach to human T cells genetically modified to express tumor-specific chimeric antigen receptors (CARs) enabled us to show in vivo CAR-mediated T cell accumulation in tumor, T cell persistence over time and concomitant imaging of T cells and tumor cells modified to express firefly luciferase. This sensitive imaging technology has application to many in vivo cell-based studies in a wide array of mouse models.


Cancer Research | 2005

Targeted Elimination of Prostate Cancer by Genetically Directed Human T Lymphocytes

T. Gade; Waleed Hassen; Elmer Santos; Gertrude Gunset; Aurore Saudemont; Michael C. Gong; Renier J. Brentjens; Xiao Song Zhong; Matthias Stephan; Jolanta Stefanski; Clay Lyddane; Joseph R. Osborne; Ian M. Buchanan; Simon J. Hall; Warren D. W. Heston; Isabelle Riviere; Steven M. Larson; Jason A. Koutcher; Michel Sadelain

The genetic transfer of antigen receptors is a powerful approach to rapidly generate tumor-specific T lymphocytes. Unlike the physiologic T-cell receptor, chimeric antigen receptors (CARs) encompass immunoglobulin variable regions or receptor ligands as their antigen recognition moiety, thus permitting T cells to recognize tumor antigens in the absence of human leukocyte antigen expression. CARs encompassing the CD3zeta chain as their activating domain induce T-cell proliferation in vitro, but limited survival. The requirements for genetically targeted T cells to function in vivo are less well understood. We have, therefore, established animal models to assess the therapeutic efficacy of human peripheral blood T lymphocytes targeted to prostate-specific membrane antigen (PSMA), an antigen expressed in prostate cancer cells and the neovasculature of various solid tumors. In vivo specificity and antitumor activity were assessed in mice bearing established prostate adenocarcinomas, using serum prostate-secreted antigen, magnetic resonance, computed tomography, and bioluminescence imaging to investigate the response to therapy. In three tumor models, orthotopic, s.c., and pulmonary, we show that PSMA-targeted T cells effectively eliminate prostate cancer. Tumor eradication was directly proportional to the in vivo effector-to-tumor cell ratio. Serial imaging further reveals that the T cells must survive for at least 1 week to induce durable remissions. The eradication of xenogeneic tumors in a murine environment shows that the adoptively transferred T cells do not absolutely require in vivo costimulation to function. These results thus provide a strong rationale for undertaking phase I clinical studies to assess PSMA-targeted T cells in patients with metastatic prostate cancer.


Cancer Research | 2011

In vivo Inhibition of Human CD19-Targeted Effector T Cells by Natural T Regulatory Cells in a Xenotransplant Murine Model of B Cell Malignancy

James Lee; Erik Hayman; Hollie J. Pegram; Elmer Santos; Glenn Heller; Michel Sadelain; Renier J. Brentjens

Human T cells genetically modified to express chimeric antigen receptors (CAR) specific to the B cell tumor antigen CD19 can successfully eradicate systemic human CD19(+) tumors in immunocompromised SCID (severe combined immunodeficient)-Beige mice. However, in the clinical setting, CD4(+) CD25(hi) T regulatory cells (Treg) present within the tumor microenvironment may be potent suppressors of tumor-targeted effector T cells. In order to assess the impact of Tregs on CAR-modified T cells in the SCID-Beige xenotransplant model, we isolated, genetically targeted and expanded natural T regulatory cells (nTreg). In vitro nTregs modified to express CD19-targeted CARs efficiently inhibited the proliferation of activated human T cells, as well as the capacity of CD19-targeted 19-28z(+) effector T cells to lyse CD19(+) Raji tumor cells. Intravenous infusion of CD19-targeted nTregs into SCID-Beige mice with systemic Raji tumors traffic to sites of tumor and recapitulate a clinically relevant hostile tumor microenvironment. Antitumor efficacy of subsequently infused 19-28z(+) effector T cells was fully abrogated as assessed by long-term survival of treated mice. Optimal suppression by genetically targeted nTregs was dependent on nTreg to effector T-cell ratios and in vivo nTreg activation. Prior infusion of cyclophosphamide in the setting of this nTreg-mediated hostile microenvironment was able to restore the antitumor activity of subsequently infused 19-28z(+) effector T cells through the eradication of tumor-targeted nTregs. These findings have significant implications for the design of future clinical trials utilizing CAR-based adoptive T-cell therapies of cancer.


Blood | 2010

Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo

Il-Kang Na; John C. Markley; Jennifer J. Tsai; Nury Yim; Bradley J. Beattie; Alexander D. Klose; Amanda M. Holland; Arnab Ghosh; Uttam K. Rao; Matthias T. Stephan; Inna Serganova; Elmer Santos; Renier J. Brentjens; Ronald G. Blasberg; Michel Sadelain; Marcel R.M. van den Brink

We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatial-temporal activation patterns of (1) proliferating T lymphocytes during graft-versus-host disease (GVHD) and (2) T-cell precursors during T-cell development after allogeneic hematopoietic stem cell transplantation (HSCT). In the first days after HSCT, donor T cells migrated to the peripheral lymph nodes and the intestines, whereas the NFAT activation was dominant in the intestines, suggesting an important role for the intestines in the early stages of alloactivation during development of GVHD. After adoptive transfer of in vitro-derived T-cell receptor (TCR) H-Y transgenic T-cell precursors into B6 (H-2(b)) hosts of both sexes, NFAT signaling and development into CD4(+) or CD8(+) single-positive cells could only be detected in the thymus of female recipients indicating either absence of positive selection or prompt depletion of double-positive thymocytes in the male recipients. Because NFAT plays an important role in a wide range of cell types, our system could provide new insights into a variety of biologic processes.


Journal of Immunology | 2006

Cutting Edge: CD28 Controls Dominant Regulatory T Cell Activity during Active Immunization

Clay Lyddane; Beata U. Gajewska; Elmer Santos; Philip D. King; Glaucia C. Furtado; Michel Sadelain

Ligation of CD28 during Ag recognition plays an important role in the generation of effective T cell responses. However, its peripheral control of regulatory T cell function remains obscure. In this study, we show that naive wild-type or CD28−/− CD4+CD25− T cells exposed to peptide in vivo develop regulatory activity that suppresses the response of adoptively transferred naive T cells to a subsequent immunogenic challenge. We find that although CD28 is engaged during the initial peptide-priming event and is essential to sustain T cell survival, it is not sufficient to prevent the dominance of regulatory T cell function. Immunization with adjuvant abrogates regulatory dominance, reducing overall Foxp3 expression in a CD28-dependent manner. We conclude that CD28 licenses active immunization by regulating Ag-induced immunoregulation.


The Journal of Nuclear Medicine | 2010

124I-Iodopyridopyrimidinone for PET of Abl Kinase–Expressing Tumors In Vivo

Mikhail Doubrovin; Tatiana Kochetkova; Elmer Santos; Darren R. Veach; Peter Smith-Jones; Nagavarakishore Pillarsetty; Julius Balatoni; William G. Bornmann; Juri G. Gelovani; Steven M. Larson

Because of the recent development of an iodopyridopyrimidinone Abl protein kinase inhibitor (PKI), 124I-SKI-212230 (124I-SKI230), we investigated the feasibility of a PET-based molecular imaging method for the direct visualization of Abl kinase expression and PKI treatment. Methods: In vitro pharmacokinetic properties, including specific and nonspecific binding of 124I-SKI230 to its Abl kinase target and interaction with other PKIs, were assessed in cell-free medium and chronic myelogenous leukemia (CML) cells overexpressing BCR-Abl (K562), in comparison with BT-474 cells that are low in Abl expression. In a xenograft tumor model, we assessed the in vivo pharmacokinetics of 124I-SKI230 using PET and postmortem tissue sampling. We also tested a paradigm of 124I-SKI230 PET after treatment of the animal with a dose of Abl-specific PKI for the monitoring of the tumor response. Results: In vitro studies confirmed that SKI230 binds to Abl kinase with nanomolar affinity, that selective uptake occurs in cell lines known to express Abl kinase, that RNAi knock-down supports specificity of cellular uptake due to Abl kinase, and that imatinib, an archetype Abl PKI, completely displaces SKI230. With SKI230, we obtained successful in vivo PET of Abl-expressing human tumors in a nude rat. We were also able to demonstrate evidence of substrate inhibition of in vivo radiotracer uptake in the xenograft tumor after treatment of the animal as a model of PKI treatment monitoring. Conclusion: These results support the hypothesis that molecular imaging using PET will be useful for the study of in vivo pharmacodynamics of Abl PKI molecular therapy in humans.

Collaboration


Dive into the Elmer Santos's collaboration.

Top Co-Authors

Avatar

Steven M. Larson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michel Sadelain

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Renier J. Brentjens

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Blesida Punzalan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nagavarakishore Pillarsetty

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Raymond Yeh

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Darren R. Veach

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Isabelle Riviere

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pat Zanzonico

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peter Smith-Jones

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge