Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elodie Mohr is active.

Publication


Featured researches published by Elodie Mohr.


Journal of Immunology | 2009

Dendritic Cells and Monocyte/Macrophages That Create the IL-6/APRIL-Rich Lymph Node Microenvironments Where Plasmablasts Mature

Elodie Mohr; Karine Serre; Rudolf A. Manz; Adam F. Cunningham; Mahmood Khan; Deborah Hardie; Roger Bird; Ian C. M. MacLennan

IL-6 and APRIL influence the growth, differentiation, and survival of normal and neoplastic Ab-forming cells (AFC). In this study, we identify two subsets of myeloid cells that associate with the AFC and are the main producers of these factors during a T-dependent Ab response to alum-precipitated protein in mouse lymph nodes. First CD11c+CD8α− dendritic cells located in the perivascular area of the T zone provide about half of the IL-6 mRNA produced in the node together with significant amounts of APRIL mRNA. The number of these cells increases during the response, at least in part due to local proliferation. The second subset comprises Gr1+CD11b+F4/80+ monocyte/macrophages. These colonize the medullary cords during the response and are the other main IL-6 mRNA producers and the greatest source of APRIL mRNA. This medullary cord monocyte/macrophage subset results in local increase of APRIL mRNA that mirrors the polarity of CXCL12 expression in the node. The distribution of these myeloid cell subsets correlates with a gradient of AFC maturation assessed by progressive loss of Ki67 as AFC pass from the B cell follicle along the perivascular areas to the medullary cords.


Blood | 2010

Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow

Oliver Winter; Katrin Moser; Elodie Mohr; Dimitra Zotos; Henriette Kaminski; Martin Szyska; Katrin Roth; David M. Wong; Christof Dame; David M. Tarlinton; Harald Schulze; Ian C. M. MacLennan; Rudolf A. Manz

Long-lived plasma cells in the bone marrow produce memory antibodies that provide immune protection persisting for decades after infection or vaccination but can also contribute to autoimmune and allergic diseases. However, the composition of the microenvironmental niches that are important for the generation and maintenance of these cells is only poorly understood. Here, we demonstrate that, within the bone marrow, plasma cells interact with the platelet precursors (megakaryocytes), which produce the prominent plasma cell survival factors APRIL (a proliferation-inducing ligand) and IL-6 (interleukin-6). Accordingly, reduced numbers of immature and mature plasma cells are found in the bone marrow of mice deficient for the thrombopoietin receptor (c-mpl) that show impaired megakaryopoiesis. After immunization, accumulation of antigen-specific plasma cells in the bone marrow is disturbed in these mice. Vice versa, injection of thrombopoietin allows the accumulation and persistence of a larger number of plasma cells generated in the course of a specific immune response in wild-type mice. These results demonstrate that megakaryocytes constitute an important component of the niche for long-lived plasma cells in the bone marrow.


Journal of Immunology | 2007

Salmonella Induces a Switched Antibody Response without Germinal Centers That Impedes the Extracellular Spread of Infection

Adam F. Cunningham; Fabrina Gaspal; Karine Serre; Elodie Mohr; Ian R. Henderson; Anthony Scott-Tucker; Sinead M. Kenny; Mahmood Khan; Kai-Michael Toellner; Peter J. L. Lane; Ian C. M. MacLennan

T-dependent Ab responses are characterized by parallel extrafollicular plasmablast growth and germinal center (GC) formation. This study identifies that, in mice, the Ab response against Salmonella is novel in its kinetics and its regulation. It demonstrates that viable, attenuated Salmonella induce a massive early T-dependent extrafollicular response, whereas GC formation is delayed until 1 mo after infection. The extrafollicular Ab response with switching to IgG2c, the IgG2a equivalent in C57BL/6 mice, is well established by day 3 and persists through 5 wk. Switching is strongly T dependent, and the outer membrane proteins are shown to be major targets of the early switched IgG2c response, whereas flagellin and LPS are not. GC responses are associated with affinity maturation of IgG2c, and their induction is associated with bacterial burden because GC could be induced earlier by treating with antibiotics. Clearance of these bacteria is not a consequence of high-affinity Ab production, for clearance occurs equally in CD154-deficient mice, which do not develop GC, and wild-type mice. Nevertheless, transferred low- and high-affinity IgG2c and less efficiently IgM were shown to impede Salmonella colonization of splenic macrophages. Furthermore, Ab induced during the infection markedly reduces bacteremia. Thus, although Ab does not prevent the progress of established splenic infection, it can prevent primary infection and impedes secondary hemogenous spread of the disease. These results may explain why attenuated Salmonella-induced B cell responses are protective in secondary, but not primary infections.


European Journal of Immunology | 2004

Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1

Adam F. Cunningham; Mahmood Khan; Jennifer Ball; Kai-Michael Toellner; Karine Serre; Elodie Mohr; Ian C. M. MacLennan

Features of the Th1 or Th2 phenotype start to develop during CD4 T cell priming. This study of the response to the bacterial flagellar protein FliC shows that either Th1 or Th2 responses can be induced in mice depending upon how FliC is presented. This is shown by assessing the cytokine mRNA and class of FliC‐specific plasma cells induced in situ. Soluble recombinant (r)FliC and polymerized FliC are strongly Th2 polarizing, inducing IL‐4, NIP45 and c‐Maf mRNA as well as ϵ and γ1 switch transcripts and switching to IgG1. CD28‐requirement for this switching shows its T cell dependence. rFliC was unable to induce markers of Th1 activity including IL‐12, T‐bet and IFN‐γ. Conversely, when FliC is presented in its native context surface‐bound on live, flagellated Salmonella, switching is predominantly to IgG2a (IgG2c in C57BL/6 mice), reflecting Th1 activity. The development of divergent FliC‐specific polarization to either Th1 or Th2 indicates that the context in which this antigen is encountered rather than its intrinsic immunostimulatory properties determines the direction of Th polarization.


Molecular Therapy | 2009

Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism.

Luke Devey; David A. Ferenbach; Elodie Mohr; Kathryn Sangster; Christopher Bellamy; Jeremy Hughes; Stephen J Wigmore

Kupffer cells are the resident macrophage population of the liver and have previously been implicated in the pathogenesis of hepatic ischemia-reperfusion injury (IRI). Kupffer cells are the major site of expression of hepatic heme oxygenase-1 (HO-1), which has been shown to have anti-inflammatory actions and to protect animals and cells from oxidative injury. Kupffer cells and circulating monocytes were selectively ablated using liposomal clodronate (LC) in the CD11b DTR mouse before induction of hepatic ischemia. Kupffer cell depletion resulted in loss of HO-1 expression and increased susceptibility to hepatic IRI, whereas ablation of circulating monocytes did not affect IRI phenotype. Targeted deletion of HO-1 rendered mice highly susceptible to hepatic IRI. In vivo, HO-1 deletion resulted in pro-inflammatory Kupffer cell differentiation characterized by enhanced Ly6c and MARCO (macrophage receptor with collagenous structure) expression as well as decreased F4/80 expression, mirrored by an expansion in immature circulating monocytes. In vitro, HO-1 inhibition throughout macrophage differentiation led to increased cell numbers, and pro-inflammatory Ly6c+ CD11c- F4/80- phenotype. These data support a critical role for tissue-resident macrophages in homeostasis following ischemic injury, and a co-dependence of HO-1 expression and tissue-resident macrophage differentiation.


Cell Reports | 2012

A Theory of Germinal Center B Cell Selection, Division, and Exit

Michael Meyer-Hermann; Elodie Mohr; Nadége Pelletier; Yang Zhang; Gabriel D. Victora; Kai-Michael Toellner

High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger.


PLOS ONE | 2011

Helios Is Associated with CD4 T Cells Differentiating to T Helper 2 and Follicular Helper T Cells In Vivo Independently of Foxp3 Expression

Karine Serre; Cécile Bénézech; Guillaume E. Desanti; Saeeda Bobat; Kai-Michael Toellner; Roger Bird; Susan Chan; Philippe Kastner; Adam F. Cunningham; Ian C. M. MacLennan; Elodie Mohr

Background Although in vitro IL-4 directs CD4 T cells to produce T helper 2 (Th2)-cytokines, these cytokines can be induced in vivo in the absence of IL-4-signalling. Thus, mechanism(s), different from the in vitro pathway for Th2-induction, contribute to in vivo Th2-differentiation. The pathway for in vivo IL-4-independent Th2-differentiation has yet to be characterized. Findings Helios (ikzf2), a member of the Ikaros transcription regulator family, is expressed in thymocytes and some antigen-matured T cells as well as in regulatory T cells. It has been proposed that Helios is a specific marker for thymus-derived regulatory T cells. Here, we show that mouse ovalbumin-specific CD4 (OTII) cells responding to alum-precipitated ovalbumin (alumOVA) upregulate Th2 features - GATA-3 and IL-4 - as well as Helios mRNA and protein. Helios is also upregulated in follicular helper T (TFh) cells in this response. By contrast, OTII cells responding to the Th1 antigen - live attenuated ovalbumin-expressing Salmonella - upregulate Th1 features - T-bet and IFN-γ - but not Helios. In addition, CD4 T cells induced to produce Th2 cytokines in vitro do not express Helios. The kinetics of Helios mRNA and protein induction mirrors that of GATA-3. The induction of IL-4, IL-13 and CXCR5 by alumOVA requires NF-κB1 and this is also needed for Helios upregulation. Importantly, Helios is induced in Th2 and TFh cells without parallel upregulation of Foxp3. These findings suggested a key role for Helios in Th2 and TFh development in response to alum-protein vaccines. We tested this possibility using Helios-deficient OTII cells and found this deficiency had no discernable impact on Th2 and TFh differentiation in response to alumOVA. Conclusions Helios is selectively upregulated in CD4 T cells during Th2 and TFh responses to alum-protein vaccines in vivo, but the functional significance of this upregulation remains uncertain.


Proceedings of the National Academy of Sciences of the United States of America | 2010

IFN-γ produced by CD8 T cells induces T-bet–dependent and –independent class switching in B cells in responses to alum-precipitated protein vaccine

Elodie Mohr; Adam F. Cunningham; Kai-Michael Toellner; Saeeda Bobat; Ruth E. Coughlan; Roger Bird; Ian C. M. MacLennan; Karine Serre

Alum-precipitated protein (alum protein) vaccines elicit long-lasting neutralizing antibody responses that prevent bacterial exotoxins and viruses from entering cells. Typically, these vaccines induce CD4 T cells to become T helper 2 (Th2) cells that induce Ig class switching to IgG1. We now report that CD8 T cells also respond to alum proteins, proliferating extensively and producing IFN-γ, a key Th1 cytokine. These findings led us to question whether adoptive transfer of antigen-specific CD8 T cells alters the characteristic CD4 Th2 response to alum proteins and the switching pattern in responding B cells. To this end, WT mice given transgenic ovalbumin (OVA)-specific CD4 (OTII) or CD8 (OTI) T cells, or both, were immunized with alum-precipitated OVA. Cotransfer of antigen-specific CD8 T cells skewed switching patterns in responding B cells from IgG1 to IgG2a and IgG2b. Blocking with anti–IFN-γ antibody largely inhibited this altered B-cell switching pattern. The transcription factor T-bet is required in B cells for IFN-γ–dependent switching to IgG2a. By contrast, we show that this transcription factor is dispensable in B cells both for IFN-γ–induced switching to IgG2b and for inhibition of switching to IgG1. Thus, T-bet dependence identifies distinct transcriptional pathways in B cells that regulate IFN-γ–induced switching to different IgG isotypes.


Molecular Immunology | 2008

Molecular differences between the divergent responses of ovalbumin-specific CD4 T cells to alum-precipitated ovalbumin compared to ovalbumin expressed by Salmonella

Karine Serre; Elodie Mohr; Kai-Michael Toellner; Adam F. Cunningham; Samuel Granjeaud; Roger Bird; Ian C. M. MacLennan

CD4 T helper (Th) cell differentiation defined by in vitro cytokine-directed culture systems leaves major gaps in our knowledge of the mechanisms driving divergent Th differentiation. This is evident from our analysis of the response of mouse ovalbumin-specific CD4 T cells to different forms of ovalbumin that induce markedly distinct responses in vivo. We show that live attenuated ovalbumin-expressing Salmonella (SalOVA) induce Th1-associated T-bet and IFN-gamma. Conversely, alum-precipitated ovalbumin (alumOVA) induces the Th2-associated GATA-3 and IL-4. The early diversity occurring within these CD4 T cells isolated 3 days after immunization was assessed using real-time RT-PCR microfluidic cards designed with 384 selected genes. The technique was validated both at the population and single cell levels at different stages of the responses, showing beta2-microglobulin to be a more stably expressed reference mRNA than either beta-actin or 18S RNA. SalOVA was then shown selectively to induce the OVA-specific CD4 T cells to produce many chemokines and pro-inflammatory cytokines, contrasting with alumOVA-induced cells that only produced a few Th2-associated cytokines. Several cytokines and features associated with follicular helper functions were induced in the OVA-specific CD4 T cells by both antigens. Finally, IL-17RB is strongly associated with OVA-specific CD4 T cells responding to alumOVA, suggesting that alum may promote Th2 immune response through a role for the IL-25/IL-17RB pathway.


European Journal of Immunology | 2011

T-zone localized monocyte-derived dendritic cells promote Th1 priming to Salmonella

Adriana Flores-Langarica; Jennifer L. Marshall; Saeeda Bobat; Elodie Mohr; Jessica Hitchcock; Ewan A. Ross; Ruth E. Coughlan; Mahmood Khan; Nico van Rooijen; Ian R. Henderson; Ian C. M. MacLennan; Adam F. Cunningham

Control of intracellular Salmonella infection requires Th1 priming and IFN‐γ production. Here, we show that efficient Th1 priming after Salmonella infection requires CD11c+CD11bhiF4/80+ monocyte‐derived dendritic cells (moDCs). In non‐infected spleens, moDCs are absent from T‐cell zones (T zones) of secondary lymphoid tissues, but by 24 h post‐infection moDCs are readily discernible in these sites. The accumulation of moDCs is more dependent upon bacterial viability than bacterial virulence. Kinetic studies showed that moDCs were necessary to prime but not sustain Th1 responses, while ex vivo studies showed that antigen‐experienced moDCs were sufficient to induce T‐cell proliferation and IFN‐γ production via a TNF‐α‐dependent mechanism. Importantly, moDCs and cDCs when co‐cultured induced superior Th1 differentiation than either subset alone, and this activity was independent of TNF‐α. Thus, optimal Th1 development to Salmonella requires the rapid accumulation of moDCs within T zones and their collaboration with cDCs.

Collaboration


Dive into the Elodie Mohr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Serre

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahmood Khan

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Roger Bird

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saeeda Bobat

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge