Elodie Portales-Casamar
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elodie Portales-Casamar.
Nucleic Acids Research | 2010
Elodie Portales-Casamar; Supat Thongjuea; Andrew T. Kwon; David J. Arenillas; Xiaobei Zhao; Eivind Valen; Dimas Yusuf; Boris Lenhard; Wyeth W. Wasserman; Albin Sandelin
JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches.
Nucleic Acids Research | 2010
Deepti Malhotra; Elodie Portales-Casamar; Anju Singh; Siddhartha Srivastava; David J. Arenillas; Christine Happel; Casper Shyr; Nobunao Wakabayashi; Thomas W. Kensler; Wyeth W. Wasserman; Shyam Biswal
The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response.
Nucleic Acids Research | 2007
Obi L. Griffith; Stephen B. Montgomery; Bridget Bernier; Bryan Chu; Katayoon Kasaian; Stein Aerts; Shaun Mahony; Monica C. Sleumer; Mikhail Bilenky; Maximilian Haeussler; Malachi Griffith; Steven M. Gallo; Belinda Giardine; Bart Hooghe; Peter Van Loo; Enrique Blanco; Amy Ticoll; Stuart Lithwick; Elodie Portales-Casamar; Ian J. Donaldson; Gordon Robertson; Claes Wadelius; Pieter De Bleser; Dominique Vlieghe; Marc S. Halfon; Wyeth W. Wasserman; Ross C. Hardison; Casey M. Bergman; Steven J.M. Jones
ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the ‘publication queue’ allows users to input relevant papers from scientific literature as targets for annotation. The queue contains 4438 gene regulation papers entered by experts and another 54 351 identified by text-mining methods. Users can enter or ‘check out’ papers from the queue for manual curation using a series of user-friendly annotation pages. A typical record entry consists of species, sequence type, sequence, target gene, binding factor, experimental outcome and one or more lines of experimental evidence. An evidence ontology was developed to describe and categorize these experiments. Records are cross-referenced to Ensembl or Entrez gene identifiers, PubMed and dbSNP and can be visualized in the Ensembl or UCSC genome browsers. All data are freely available through search pages, XML data dumps or web services at: http://www.oreganno.org.
Blood | 2008
Anne Saumet; Guillaume Vetter; Manuella Bouttier; Elodie Portales-Casamar; Wyeth W. Wasserman; Thomas Maurin; Bernard Mari; Pascal Barbry; Laurent Vallar; Evelyne Friederich; Khalil Arar; Bruno Cassinat; Christine Chomienne; Charles-Henri Lecellier
Micro(mi)RNAs are small noncoding RNAs that orchestrate many key aspects of cell physiology and their deregulation is often linked to distinct diseases including cancer. Here, we studied the contribution of miRNAs in a well-characterized human myeloid leukemia, acute promyelocytic leukemia (APL), targeted by retinoic acid and trioxide arsenic therapy. We identified several miRNAs transcriptionally repressed by the APL-associated PML-RAR oncogene which are released after treatment with all-trans retinoic acid. These coregulated miRNAs were found to control, in a coordinated manner, crucial pathways linked to leukemogenesis, such as HOX proteins and cell adhesion molecules whose expressions are thereby repressed by the chemotherapy. Thus, APL appears linked to transcriptional perturbation of miRNA genes, and clinical protocols able to successfully eradicate cancer cells may do so by restoring miRNA expression. The identification of abnormal miRNA biogenesis in cancer may therefore provide novel biomarkers and therapeutic targets in myeloid leukemias.
Nucleic Acids Research | 2009
Elodie Portales-Casamar; David J. Arenillas; Jonathan S. Lim; Magdalena I. Swanson; Steven Jiang; Anthony McCallum; Stefan Kirov; Wyeth W. Wasserman
The PAZAR database unites independently created and maintained data collections of transcription factor and regulatory sequence annotation. The flexible PAZAR schema permits the representation of diverse information derived from experiments ranging from biochemical protein–DNA binding to cellular reporter gene assays. Data collections can be made available to the public, or restricted to specific system users. The data ‘boutiques’ within the shopping-mall-inspired system facilitate the analysis of genomics data and the creation of predictive models of gene regulation. Since its initial release, PAZAR has grown in terms of data, features and through the addition of an associated package of software tools called the ORCA toolkit (ORCAtk). ORCAtk allows users to rapidly develop analyses based on the information stored in the PAZAR system. PAZAR is available at http://www.pazar.info. ORCAtk can be accessed through convenient buttons located in the PAZAR pages or via our website at http://www.cisreg.ca/ORCAtk.
Genome Biology | 2007
Elodie Portales-Casamar; Stefan Kirov; Jonathan Lim; Stuart Lithwick; Magdalena I. Swanson; Amy Ticoll; Jay Snoddy; Wyeth W. Wasserman
PAZAR is an open-access and open-source database of transcription factor and regulatory sequence annotation with associated web interface and programming tools for data submission and extraction. Curated boutique data collections can be maintained and disseminated through the unified schema of the mall-like PAZAR repository. The Pleiades Promoter Project collection of brain-linked regulatory sequences is introduced to demonstrate the depth of annotation possible within PAZAR. PAZAR, located at http://www.pazar.info, is open for business.
BMC Bioinformatics | 2011
Antony Le Béchec; Elodie Portales-Casamar; Guillaume Vetter; Michèle Moes; Pierre-Joachim Zindy; Anne Saumet; David J. Arenillas; Charles Theillet; Wyeth W. Wasserman; Charles-Henri Lecellier; Evelyne Friederich
BackgroundTo understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date.ResultsTo identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs). Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL). In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT), an evolutionary-conserved process which is implicated in embryonic development and disease.ConclusionsMIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http://mironton.uni.lu which will be updated on a regular basis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Elodie Portales-Casamar; Douglas J. Swanson; Li Liu; Charles De Leeuw; Kathleen G. Banks; Shannan J. Ho Sui; Debra L. Fulton; Johar Ali; Mahsa Amirabbasi; David J. Arenillas; Nazar Babyak; Sonia F. Black; Russell J. Bonaguro; Erich Brauer; Tara R. Candido; Mauro Castellarin; Jing Chen; Ying Chen; Jason C. Y. Cheng; Vik Chopra; T. Roderick Docking; Lisa Dreolini; Cletus D'souza; Erin K. Flynn; Randy Glenn; Kristi Hatakka; Taryn Hearty; Behzad Imanian; Steven Jiang; Shadi Khorasan-zadeh
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Epigenetics & Chromatin | 2014
Rachel D. Edgar; Powell Patrick Cheng Tan; Elodie Portales-Casamar; Paul Pavlidis
BackgroundDNA methylation is thought to play an important role in the regulation of mammalian gene expression, partly based on the observation that a lack of CpG island methylation in gene promoters is associated with high transcriptional activity. However, the CpG island methylation level only accounts for a fraction of the variance in gene expression, and methylation in other domains is hypothesized to play a role. We hypothesized that regions of very high stability in methylation would exist and provide biological insight into the role of methylation both within and outside CpG islands.ResultsWe set out to identify highly stable regions in the human methylome, based on the subset of CpGs assayed with an Illumina Infinium 450 K array. Using 1,737 samples from 30 publically available studies, we identified 15,224 CpGs that are ‘ultrastable’ in their state across tissues and developmental stages (974 always methylated; 14,250 always unmethylated). Further analysis of ultrastable CpGs led us to identify a novel subset of CpG islands, ‘ravines’, which exhibit a markedly consistent pattern of low methylation with highly methylated flanking shores and shelves. We distinguish ravines from other CpG islands characterized by a broader flanking region of low methylation. Interestingly, ravines are associated with higher gene expression compared to typical unmethylated CpG islands, and are more often found near housekeeping genes.ConclusionsThe identification of ultrastable sites in the human methylome led us to identify a subclass of CpG islands characterized by a very stable pattern of methylation encompassing the island and flanking regions, established early in development and maintained through differentiation. This pattern is associated with particularly high levels of gene expression, providing new evidence that methylation beyond the CpG island could play a role in gene expression.
Nature Neuroscience | 2015
Kristina Becanovic; Anne Nørremølle; Scott J. Neal; Chris Kay; Jennifer A. Collins; David J. Arenillas; Tobias Lilja; Giulia Gaudenzi; Shiana Manoharan; Crystal N. Doty; Jessalyn Beck; Nayana Lahiri; Elodie Portales-Casamar; Simon C. Warby; Colum Connolly; Rebecca A.G. De Souza; Sarah J. Tabrizi; Ola Hermanson; Douglas R. Langbehn; Michael R. Hayden; Wyeth W. Wasserman; Blair R. Leavitt
Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case–based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.