Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eloisa Yuste is active.

Publication


Featured researches published by Eloisa Yuste.


Nature Medicine | 2009

Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys

Philip R. Johnson; Bruce C. Schnepp; Jianchao Zhang; Mary J. Connell; Sean M Greene; Eloisa Yuste; Ronald C. Desrosiers; K. Reed Clark

The key to an effective HIV vaccine is development of an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the simian immunodeficiency virus (SIV) model, we have taken a markedly different approach: delivery to muscle of an adeno-associated virus gene transfer vector expressing antibodies or antibody-like immunoadhesins having predetermined SIV specificity. With this approach, SIV-specific molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and have observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds considerable promise as a unique approach to an effective HIV vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α

Ruchi M. Newman; Laura R. Hall; Guo-Lin Chen; Shuji Sato; Eloisa Yuste; William E. Diehl; Eric Hunter; Amitinder Kaur; Gregory M. Miller; Welkin E. Johnson

Retroviral restriction factor TRIM5α exhibits a high degree of sequence variation among primate species. It has been proposed that this diversity is the cumulative result of ancient, lineage-specific episodes of positive selection. Here, we describe the contribution of within-species variation to the evolution of TRIM5α. Sampling within two geographically distinct Old World monkey species revealed extensive polymorphism, including individual polymorphisms that predate speciation (shared polymorphism). In some instances, alleles were more closely related to orthologues of other species than to one another. Both silent and nonsynonymous changes clustered in two domains. Functional assays revealed consequences of polymorphism, including differential restriction of a small panel of retroviruses by very similar alleles. Together, these features indicate that the primate TRIM5α locus has evolved under balancing selection. Except for the MHC there are few, if any, examples of long-term balancing selection in primates. Our results suggest a complex evolutionary scenario, in which fixation of lineage-specific adaptations is superimposed on a subset of critical polymorphisms that predate speciation events and have been maintained by balancing selection for millions of years.


Journal of Virology | 2004

Modulation of Env Content in Virions of Simian Immunodeficiency Virus: Correlation with Cell Surface Expression and Virion Infectivity

Eloisa Yuste; Jacqueline D. Reeves; Robert W. Doms; Ronald C. Desrosiers

ABSTRACT Specific mutations were created in the cytoplasmic domain of the gp41 transmembrane protein of simian immunodeficiency virus strain 239 (SIV239). The resultant strains included a mutant in which Env residue 767 was changed to a stop codon, a double mutant in which positions 738 and 739 were changed to stop codons, another mutant in which a prominent endocytosis motif was changed from YRPV to GRPV by the substitution of tyrosine 721, and a final combination mutant bearing Q738stop, Q739stop, and Y721G mutations. The effects of these mutations on cell surface expression, on Env incorporation into virions, and on viral infectivity were examined. The molar ratio of Gag to gp120 of 54:1 that we report here for SIV239 virions agrees very well with the ratio of 60:1 reported previously by Chertova et al. (E. Chertova, J. W. Bess, Jr., B. J. Crise, R. C. Sowder II, T. M. Schaden, J. M. Hilburn, J. A. Hoxie, R. E. Benveniste, J. D. Lifson, L. E. Henderson, and L. O. Arthur, J. Virol. 76:5315-5325, 2002), although they were determined by very different methodologies. Assuming 1,200 to 2,500 Gag molecules per virion, this corresponds to 7 to 16 Env trimers per SIV239 virion particle. Although all of the mutations increased Env levels in virions, E767stop had the most dramatic effect, increasing the Env content per virion 25- to 50-fold. Increased levels of Env content in virions correlated strictly with higher levels of Env expression on the cell surface. The increased Env content with the E767stop mutation also correlated with an increased infectivity, but the degree of change was not proportional: the 25- to 50-fold increase in Env content only increased infectivity 2- to 3-fold. All of the mutants replicated efficiently in the CEMx174 and Rh221-89 cell lines. Although some of these findings have been reported previously, our findings show that the effects of the cytoplasmic domain of gp41 on the Env content in virions can be dramatic, that the Env content in virions correlates strictly with the levels of cell surface expression, and that the Env content in virions can determine infectivity; furthermore, our results define a particular change with the most dramatic effects.


Journal of Virology | 2006

Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: replication, neutralization, and survey of HIV-1-positive plasma.

Eloisa Yuste; Hannah B. Sanford; Jill Carmody; Jacqueline G. Bixby; Susan J. Little; Michael B. Zwick; Tom Greenough; Dennis R. Burton; Douglas D. Richman; Ronald C. Desrosiers; Welkin E. Johnson

ABSTRACT To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.


Journal of Virology | 2000

Unusual distribution of mutations associated with serial bottleneck passages of human immunodeficiency virus type 1.

Eloisa Yuste; Cecilio López-Galíndez; Esteban Domingo

ABSTRACT Repeated bottleneck passages result in fitness losses of RNA viruses. In the case of human immunodeficiency virus type 1 (HIV-1), decreases in fitness after a limited number of plaque-to-plaque transfers in MT-4 cells were very drastic. Here we report an analysis of entire genomic nucleotide sequences of four HIV-1 clones derived from the same HIV-1 isolate and their low-fitness progeny following 7 to 15 plaque-to-plaque passages. Clones accumulated 4 to 28 mutations per genome, with dominance of A → G and G → A transitions (57% of all mutations) and 49% nonsynonymous replacements. One clone—but not three sibling clones—showed an overabundance of G → A transitions, evidencing the highly stochastic nature of some types of mutational bias. The distribution of mutations along the genome was very unusual in that mutation frequencies in gag were threefold higher than in env. Particularly striking was the complete absence of replacements in the V3 loop of gp120, confirmed with partial nucleotide sequences of additional HIV-1 clones subjected to repeated bottleneck passages. The analyses revealed several amino acid replacements that have not been previously recorded among natural HIV-1 isolates and illustrate how evolution of an RNA virus genome, with regard to constant and variable regions, can be profoundly modified by alterations in population dynamics.


Journal of Virology | 2005

Virion Envelope Content, Infectivity, and Neutralization Sensitivity of Simian Immunodeficiency Virus

Eloisa Yuste; Welkin E. Johnson; George N. Pavlakis; Ronald C. Desrosiers

ABSTRACT A truncating E767stop mutation was introduced into the envelope glycoprotein of simian immunodeficiency virus (SIV) strain SIV239-M5 (moderately sensitive to antibody-mediated neutralization and lacking five sites for N-linked carbohydrate attachment) and strain SIV316 (very sensitive to neutralization, with eight amino acid changes from the neutralization-resistant parental molecular clone, SIV239). The truncating mutation increased Env content in virions, increased infectivity, and decreased sensitivity to antibody-mediated neutralization in both strains. However, the magnitude of the effect on infectivity and neutralization sensitivity differed considerably between the two strains. In the context of strain SIV239-M5, truncation increased Env content in virions approximately 10-fold and infectivity in a reporter cell assay 24-fold. The truncated SIV239-M5 was only slightly more resistant to neutralization by polyclonal monkey sera and by monoclonal antibodies than SIV239-M5 with a full-length envelope glycoprotein. In the context of strain SIV316, truncation increased infectivity a dramatic 480-fold, while envelope content in virions was increased only about 14-fold. This dramatic increase in infectivity cannot be simply explained by the increase in envelope content and is likely due to an increase in inherent infectivity, i.e., infectivity per spike, that results from truncation. The truncated SIV316 was extremely resistant to antibody-mediated neutralization. In fact, it was not neutralized by any of the antibodies tested. When increasing amounts of SIV316 envelope glycoprotein (full length) were provided in trans to SIV316, infectivity was increased and sensitivity to neutralization was decreased, but to nowhere near the degree that was obtained when truncated SIV316 envelope glycoprotein was used. Truncated forms of SIV239 and SIV239-M5 required higher levels of soluble CD4 for inhibition of infection than their nontruncated forms; truncated SIV316 did not. Our results suggest that envelope content in SIV virions, infectivity, and resistance to antibody-mediated neutralization can be increased not only by truncation of the cytoplasmic domain but also by provision of excess envelope in trans. The striking increase in infectivity that results from truncation in the context of SIV316 appears to be due principally to an increase in inherent infectivity per spike.


PLOS Pathogens | 2009

Immunization with single-cycle SIV significantly reduces viral loads after an intravenous challenge with SIV(mac)239.

Bin Jia; Sharon K. Ng; M. Quinn DeGottardi; Michael Piatak; Eloisa Yuste; Angela Carville; Keith G. Mansfield; Wenjun Li; Barbra A. Richardson; Jeffrey D. Lifson; David T. Evans

Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV.


Journal of Virology | 2008

Potent Antibody-Mediated Neutralization and Evolution of Antigenic Escape Variants of Simian Immunodeficiency Virus Strain SIVmac239 In Vivo

Shuji Sato; Eloisa Yuste; William Lauer; Eun Hyuk Chang; Jennifer S. Morgan; Jacqueline G. Bixby; Jeffrey D. Lifson; Ronald C. Desrosiers; Welkin E. Johnson

ABSTRACT Here, we describe the evolution of antigenic escape variants in a rhesus macaque that developed unusually high neutralizing antibody titers to SIVmac239. By 42 weeks postinfection, 50% neutralization of SIVmac239 was achieved with plasma dilutions of 1:1,000. Testing of purified immunoglobulin confirmed that the neutralizing activity was antibody mediated. Despite the potency of the neutralizing antibody response, the animal displayed a typical viral load profile and progressed to terminal AIDS with a normal time course. Viral envelope sequences from week 16 and week 42 plasma contained an excess of nonsynonymous substitutions, predominantly in V1 and V4, including individual sites with ratios of nonsynonymous to synonymous substitution rates (dN/dS) highly suggestive of strong positive selection. Recombinant viruses encoding envelope sequences isolated from these time points remained resistant to neutralization by all longitudinal plasma samples, revealing the failure of the animal to mount secondary responses to the escaped variants. Substitutions at two sites with significant dN/dS values, one in V1 and one in V4, were independently sufficient to confer nearly complete resistance to neutralization. Substitutions at three additional sites, one in V4 and two in gp41, conferred moderate to high levels of resistance when tested individually. All the amino acid changes leading to escape resulted from single nucleotide substitutions. The observation that antigenic escape resulted from individual, single amino acid replacements at sites well separated in current structural models of Env indicates that the virus can utilize multiple independent pathways to rapidly achieve similar levels of resistance.


Vaccine | 2011

A cell-to-cell HIV transfer assay identifies humoral responses with broad neutralization activity

Sonsoles Sánchez-Palomino; Marta Massanella; Jorge Carrillo; Ana Gabriela Felix Garcia; Felipe García; Nuria González; Alberto Merino; José Alcamí; Margarita Bofill; Eloisa Yuste; Josep M. Gatell; Bonaventura Clotet; Julià Blanco

BACKGROUND Cell-to-cell HIV spread through virological synapses proceeds in two steps, first HIV particles are rapidly transferred to target cells in a CD4-dependent manner and then coreceptor-dependent events allow for infection or death of single target cells and cell-to-cell fusion. METHODS 293T or MOLT cells producing HIV particles were cocultured with primary CD4 T-cells or reporter cell lines. The extent of HIV transfer, cell fusion and target cell death was assessed. Inhibition by sera from 19 HIV-infected patients was evaluated and compared with cell-free HIV neutralization using different envelopes from clades A, B, C and E. RESULTS Sera showed different abilities to protect CD4 T-cells from cell-to-cell transfer, fusion or death when cocultured with HIV producing 293T cells. Some sera were able to block all parameters (a property of IgGb12), while other showed lower activity against HIV transfer despite being able to block fusion and death (a property of antibodies blocking post-CD4 binding steps). Neutralization of cell-to-cell HIV transfer strongly correlated with IgG binding to native Env. Interestingly, sera that efficiently blocked HIV transfer showed broader neutralizing response, as they neutralized a higher percentage of the viruses tested compared with sera showing low CD4 binding site responses (P=0.01). Similar results were observed in a model of T cell-T cell HIV transmission, although this experimental model showed lower capacity to discriminate broadly neutralizing responses. CONCLUSION Cell-to-cell HIV transfer assays identify sera with broadly neutralizing capacity and may help to characterize anti-HIV humoral responses.


Journal of Virology | 2012

Evidence against Extracellular Exposure of a Highly Immunogenic Region in the C-Terminal Domain of the Simian Immunodeficiency Virus gp41 Transmembrane Protein

Thomas S. Postler; José M. Martinez-Navio; Eloisa Yuste; Ronald C. Desrosiers

ABSTRACT The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called “Kennedy epitope,” that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.

Collaboration


Dive into the Eloisa Yuste's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Sanchez-Merino

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge