Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eloise Mastrangelo is active.

Publication


Featured researches published by Eloise Mastrangelo.


Antiviral Research | 2010

Structure and functionality in flavivirus NS-proteins: perspectives for drug design.

Michela Bollati; Karin Alvarez; René Assenberg; Cécile Baronti; Bruno Canard; Shelley Cook; Bruno Coutard; Etienne Decroly; Xavier de Lamballerie; Ernest A. Gould; Gilda Grard; Jonathan M. Grimes; Rolf Hilgenfeld; Anna M. Jansson; Hélène Malet; Erika J. Mancini; Eloise Mastrangelo; Andrea Mattevi; Mario Milani; Gregory Moureau; Johan Neyts; Raymond J. Owens; Jingshan Ren; Barbara Selisko; Silvia Speroni; Holger Steuber; David I. Stuart; Torsten Unge; Martino Bolognesi

Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.


Journal of Antimicrobial Chemotherapy | 2012

Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

Eloise Mastrangelo; Margherita Pezzullo; Tine De Burghgraeve; Suzanne Kaptein; Boris Pastorino; Kai Dallmeier; Xavier de Lamballerie; Johan Neyts; Alicia M. Hanson; David N. Frick; Martino Bolognesi; Mario Milani

OBJECTIVES Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. METHODS Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. RESULTS Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. CONCLUSIONS The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.


Journal of Virology | 2009

Crystal Structure of a Novel Conformational State of the Flavivirus NS3 Protein: Implications for Polyprotein Processing and Viral Replication

René Assenberg; Eloise Mastrangelo; Thomas S. Walter; Anil Verma; Mario Milani; Raymond J. Owens; David I. Stuart; Jonathan M. Grimes; Erika J. Mancini

ABSTRACT The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-Å-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.


British Journal of Cancer | 2010

Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib

Daniele Lecis; Carmelo Drago; Leonardo Manzoni; Pierfausto Seneci; Carlo Scolastico; Eloise Mastrangelo; Martino Bolognesi; A Anichini; H Kashkar; H Walczak; Domenico Delia

Background:XIAP (X-linked inhibitor of apoptosis protein) is an anti-apoptotic protein exerting its activity by binding and suppressing caspases. As XIAP is overexpressed in several tumours, in which it apparently contributes to chemoresistance, and because its activity in vivo is antagonised by second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis-binding protein with low pI, small molecules mimicking SMAC (so called SMAC-mimetics) can potentially overcome tumour resistance by promoting apoptosis.Methods:Three homodimeric compounds were synthesised tethering a monomeric SMAC-mimetic with different linkers and their affinity binding for the baculoviral inhibitor repeats domains of XIAP measured by fluorescent polarisation assay. The apoptotic activity of these molecules, alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and/or Bortezomib, was tested in melanoma cell lines by MTT viability assays and western blot analysis of activated caspases.Results:We show that in melanoma cell lines, which are typically resistant to chemotherapeutic agents, XIAP knock-down sensitises cells to TRAIL treatment in vitro, also favouring the accumulation of cleaved caspase-8. We also describe a new series of 4-substituted azabicyclo[5.3.0]alkane monomeric and dimeric SMAC-mimetics that target various members of the IAP family and powerfully synergise at submicromolar concentrations with TRAIL in inducing cell death. Finally, we show that the simultaneous administration of newly developed SMAC-mimetics with Bortezomib potently triggers apoptosis in a melanoma cell line resistant to the combined effect of SMAC-mimetics and TRAIL.Conclusion:Hence, the newly developed SMAC-mimetics effectively synergise with TRAIL and Bortezomib in inducing cell death. These findings warrant further preclinical studies in vivo to verify the anticancer effectiveness of the combination of these agents.


Antiviral Research | 2009

Flaviviral methyltransferase/RNA interaction: Structural basis for enzyme inhibition

Mario Milani; Eloise Mastrangelo; Michela Bollati; Barbara Selisko; Etienne Decroly; Mickaël Bouvet; Bruno Canard; Martino Bolognesi

Abstract Flaviviruses are the causative agents of severe diseases such as Dengue or Yellow fever. The replicative machinery used by the virus is based on few enzymes including a methyltransferase, located in the N-terminal domain of the NS5 protein. Flaviviral methyltransferases are involved in the last two steps of the mRNA capping process, transferring a methyl group from S-adenosyl-l-methionine onto the N7 position of the cap guanine (guanine-N7 methyltransferase) and the ribose 2′O position of the first nucleotide following the cap guanine (nucleoside-2′O methyltransferase). The RNA capping process is crucial for mRNA stability, protein synthesis and virus replication. Such an essential function makes methyltransferases attractive targets for the design of antiviral drugs. In this context, starting from the crystal structure of Wesselsbron flavivirus methyltransferase, we elaborated a mechanistic model describing protein/RNA interaction during N7 methyl transfer. Next we used an in silico docking procedure to identify commercially available compounds that would display high affinity for the methyltransferase active site. The best candidates selected were tested in vitro to assay their effective inhibition on 2′O and N7 methyltransferase activities on Wesselsbron and Dengue virus (Dv) methyltransferases. The results of such combined computational and experimental screening approach led to the identification of a high-potency inhibitor.


Biochemical and Biophysical Research Communications | 2009

Designing Smac-mimetics as antagonists of XIAP, cIAP1, and cIAP2.

Federica Cossu; Eloise Mastrangelo; Mario Milani; Graziella Sorrentino; Daniele Lecis; Domenico Delia; Leonardo Manzoni; Pierfausto Seneci; Carlo Scolastico; Martino Bolognesi

Inhibitor of apoptosis proteins (IAPs) such as XIAP, cIAP1, and cIAP2 are upregulated in many cancer cells. Several compounds targeting IAPs and inducing cell death in cancer cells have been developed. Some of these are synthesized mimicking the N-terminal tetrapeptide sequence of Smac/DIABLO, the natural endogenous IAPs inhibitor. Starting from such conceptual design, we generated a library of 4-substituted azabicyclo[5.3.0]alkane Smac-mimetics. Here we report the crystal structure of the BIR3 domain from XIAP in complex with Smac037, a compound designed according to structural principles emerging from our previously analyzed XIAP BIR3/Smac-mimetic complexes. In parallel, we present an in silico docking analysis of three Smac-mimetics to the BIR3 domain of cIAP1, providing general considerations for the development of high affinity lead compounds targeting three members of the IAP family.


Journal of Molecular Biology | 2012

Structure-Based Inhibition of Norovirus RNA-Dependent RNA Polymerases.

Eloise Mastrangelo; Margherita Pezzullo; Delia Tarantino; Roberto Petazzi; Francesca Germani; Dorothea Kramer; Ivonne Robel; Jacques Rohayem; Martino Bolognesi; Mario Milani

Caliciviridae are RNA viruses with a single-stranded, positively oriented polyadenylated genome, responsible for a broad spectrum of diseases such as acute gastroenteritis in humans. Recently, analyses on the structures and functionalities of the RNA-dependent RNA polymerase (RdRp) from several Caliciviruses have been reported. The RdRp is predicted to play a key role in genome replication, as well as in synthesis and amplification of additional subgenomic RNA. Starting from the crystal structures of human Norovirus (hNV) RdRp, we performed an in silico docking search to identify synthetic compounds with predicted high affinity for the enzyme active site. The best-ranked candidates were tested in vitro on murine Norovirus (MNV) and hNV RdRps to assay their inhibition of RNA polymerization. The results of such combined computational and experimental screening approach led to the identification of two high-potency inhibitors: Suramin and NF023, both symmetric divalent molecules hosting two naphthalene-trisulfonic acid heads. We report here the crystal structure of MNV RdRp alone and in the presence of the two identified inhibitors. Both inhibitory molecules occupy the same RdRp site, between the fingers and thumb domains, with one inhibitor head close to residue 42 and to the protein active site. To further validate the structural results, we mutated Trp42 to Ala in MNV RdRp and the corresponding residue (i.e., Tyr41 to Ala) in hNV RdRp. Both NF023 and Suramin displayed reduced inhibitory potency versus the mutated hNV RdRp, thus hinting at a conserved inhibitor binding mode in the two polymerases.


Protein Science | 2007

Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-O-methyltransferase

Eloise Mastrangelo; Michela Bollati; Mario Milani; Barbara Selisko; Frederic Peyrane; Bruno Canard; Gilda Grard; Xavier de Lamballerie; Martino Bolognesi

Viral methyltransferases are involved in the mRNA capping process, resulting in the transfer of a methyl group from S‐adenosyl‐L‐methionine to capped RNA. Two groups of methyltransferases (MTases) are known: (guanine‐N7)‐methyltransferases (N7MTases), adding a methyl group onto the N7 atom of guanine, and (nucleoside‐2′‐O‐)‐methyltransferases (2′OMTases), adding a methyl group to a ribose hydroxyl. We have expressed and purified two constructs of Meaban virus (MV; genus Flavivirus) NS5 protein MTase domain (residues 1–265 and 1–293, respectively). We report here the three‐dimensional structure of the shorter MTase construct in complex with the cofactor S‐adenosyl‐L‐methionine, at 2.9 Å resolution. Inspection of the refined crystal structure, which highlights structural conservation of specific active site residues, together with sequence analysis and structural comparison with Dengue virus 2′OMTase, suggests that the crystallized enzyme belongs to the 2′OMTase subgroup. Enzymatic assays show that the short MV MTase construct is inactive, but the longer construct expressed can transfer a methyl group to the ribose 2′O atom of a short GpppAC5 substrate. West Nile virus MTase domain has been recently shown to display both N7 and 2′O MTase activity on a capped RNA substrate comprising the 5′‐terminal 190 nt of the West Nile virus genome. The lack of N7 MTase activity here reported for MV MTase may be related either to the small size of the capped RNA substrate, to its sequence, or to different structural properties of the C‐terminal regions of West Nile virus and MV MTase‐domains.


Journal of Molecular Biology | 2009

Structural Basis for Bivalent Smac-Mimetics Recognition in the IAP Protein Family

Federica Cossu; Mario Milani; Eloise Mastrangelo; Patrice Vachette; Federica Servida; Daniele Lecis; Giulia Canevari; Domenico Delia; Carmelo Drago; Vincenzo Rizzo; Leonardo Manzoni; Pierfausto Seneci; Carlo Scolastico; Martino Bolognesi

XIAP is an apoptotic regulator protein that binds to the effector caspases -3 and -7 through its BIR2 domain, and to initiator caspase-9 through its BIR3 domain. Molecular docking studies suggested that Smac-DIABLO may antagonize XIAP by concurrently targeting both BIR2 and BIR3 domains; on this basis bivalent Smac-mimetic compounds have been proposed and characterized. Here, we report the X-ray crystal structure of XIAP-BIR3 domain in complex with a two-headed compound (compound 3) with improved efficacy relative to its monomeric form. A small-angle X-ray scattering study of XIAP-BIR2BIR3, together with fluorescence polarization binding assays and compound 3 cytotoxicity tests on HL60 leukemia cell line are also reported. The crystal structure analysis reveals a network of interactions supporting XIAP-BIR3/compound 3 recognition; moreover, analytical gel-filtration chromatography shows that compound 3 forms a 1:1 stoichiometric complex with a XIAP protein construct containing both BIR2 and BIR3 domains. On the basis of the crystal structure and small-angle X-ray scattering, a model of the same BIR2-BIR3 construct bound to compound 3 is proposed, shedding light on the ability of compound 3 to relieve XIAP inhibitory effects on caspase-9 as well as caspases -3 and -7. A molecular modeling/docking analysis of compound 3 bound to cIAP1-BIR3 domain is presented, considering that Smac-mimetics have been shown to kill tumor cells by inducing cIAP1 and cIAP2 ubiquitination and degradation. Taken together, the results reported here provide a rationale for further development of compound 3 as a lead in the design of dimeric Smac mimetics for cancer treatment.


Bioorganic & Medicinal Chemistry | 2009

Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy

Pierfausto Seneci; Aldo Bianchi; Cristina Battaglia; Laura Belvisi; Martino Bolognesi; Andrea Caprini; Federica Cossu; Elena de Franco; Marilenia De Matteo; Domenico Delia; Carmelo Drago; Amira Khaled; Daniele Lecis; Leonardo Manzoni; Moira Marizzoni; Eloise Mastrangelo; Mario Milani; Ilaria Motto; Elisabetta Moroni; Donatella Potenza; Vincenzo Rizzo; Federica Servida; Elisa Turlizzi; Maurizio Varrone; Francesca Vasile; Carlo Scolastico

Novel proapoptotic Smac mimics/IAPs inhibitors have been designed, synthesized and characterized. Computational models and structural studies (crystallography, NMR) have elucidated the SAR of this class of inhibitors, and have permitted further optimization of their properties. In vitro characterization (XIAP BIR3 and linker-BIR2-BIR3 binding, cytotox assays, early ADMET profiling) of the compounds has been performed, identifying one lead for further in vitro and in vivo evaluation.

Collaboration


Dive into the Eloise Mastrangelo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Canard

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge