Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Els Goulmy is active.

Publication


Featured researches published by Els Goulmy.


The New England Journal of Medicine | 1996

Mismatches of Minor Histocompatibility Antigens between HLA-Identical Donors and Recipients and the Development of Graft-Versus-Host Disease after Bone Marrow Transplantation

Els Goulmy; R.F. Schipper; Jos Pool; Els Blokland; J.H. Frederik Falkenburg; Jaak M. Vossen; Alois Gratwohl; Georgia B. Vogelsang; Hans C. van Houwelingen; Jon J. van Rood

BACKGROUND Graft-versus-host disease (GVHD) can be a major complication of allogeneic bone marrow transplantation even when the donor and recipient are siblings and share identical major histocompatibility antigens. The explanation may be a mismatch of minor histocompatibility antigens. We previously characterized five minor histocompatibility antigens, HA-1, 2, 3, 4, and 5, that are recognized by T cells in association with the major histocompatibility antigens HLA-A1 an A2. METHODS We collected peripheral-blood leukocytes from 148 bone marrow recipients and their sibling donors, who were genotypically HLA identical. Fifty pairs were positive for HLA-A1, 117 were positive for HLA-A2, and 19 were positive for both. The pairs were typed with cytotoxic-T-cell clones specific for minor histocompatibility antigens HA-1, 2, 3, 4, and 5. RESULTS Mismatches of HA-3 were equally distributed among recipients in whom GVHD developed and those in whom it did not. By contrast, a mismatch of only HA-1 was significantly correlated with GVHD of grade II or higher (odds ratio, infinity; P = 0.02) in adults. One or more mismatches of HA-1, 2, 4, and 5 were also significantly associated with GVHD (odds ratio, infinity; P = 0.006) in adults. These associations were not observed in children. CONCLUSIONS A mismatch of minor histocompatibility antigen HA-1 can cause GVHD in adult recipients of allogeneic bone marrow from HLA-identical donors. Prospective HA-1 typing may improve donor selection and identify recipients who are at high risk for GVHD.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia

W. A. Erik Marijt; Mirjam H.M. Heemskerk; Freke M. Kloosterboer; Els Goulmy; Michel G.D. Kester; Menno A.W.G. van der Hoorn; Simone A. P. van Luxemburg-Heys; Manja Hoogeboom; Tuna Mutis; Jan W. Drijfhout; Jon J. van Rood; R. Willemze; J.H. Frederik Falkenburg

Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1- and/or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1- and/or HA-2-negative donors. Using HLA-A2/HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1- and HA-2-specific CD8+ T cells in the blood of the recipients 5–7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1- and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1- and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignances relapsing after alloSCT.


Immunity | 1997

The HLA-A*0201-Restricted H-Y Antigen Contains a Posttranslationally Modified Cysteine That Significantly Affects T Cell Recognition

Leslie Meadows; Wei Wang; Joke M. M. den Haan; Els Blokland; Carla Reinhardus; Jan W. Drijfhout; Jeffrey Shabanowitz; Richard A. Pierce; Alexander I. Agulnik; Colin E. Bishop; Donald F. Hunt; Els Goulmy; Victor H. Engelhard

A peptide recognized by two cytotoxic T cell clones specific for the human minor histocompatibility antigen H-Y and restricted by HLA-A*0201 was identified. This peptide originates from SMCY, as do two other H-Y epitopes, supporting the importance of this protein as a major source of H-Y determinants in mice and humans. In naturally processed peptides, T cells only recognize posttranslationally altered forms of this peptide that have undergone modification of a cysteine residue in the seventh position. One of these modifications involves attachment of a second cysteine residue via a disulfide bond. This modification has profound effects on T cell recognition and also occurs in other class I MHC-associated peptides, supporting its general importance as an immunological determinant.


Nature Medicine | 2002

In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens.

Anne M. Dickinson; Xiao-Nong Wang; Lisbet Sviland; Florry A. Vyth-Dreese; Graham Jackson; Ton N. M. Schumacher; John B. A. G. Haanen; Tuna Mutis; Els Goulmy

Minor histocompatibility antigens (mHags) are immunogenic peptides from polymorphic cellular proteins that induce strong T-cell responses after human leukocyte antigen (HLA)-matched, mHag-mismatched stem-cell transplantation. mHags with broad or limited tissue expression are target antigens for graft-versus-host (GvH) and graft-versus-leukemia (GvL) reactivities. Separation of these activities is crucial for adoptive immunotherapy of leukemia without GvH disease. Therefore, using a skin-explant assay we investigated the in situ activities of cytotoxic T lymphocytes (CTLs) specific for the ubiquitously expressed mHag H-Y and for the hematopoietic-restricted mHags HA-1 and HA-2. H-Y-specific CTLs, visualized by tetrameric HLA–mHag peptide complexes, infiltrated male skin sections within 24 hours, induced severe GvH reactions of grade III–IV and produced high levels of IFN-γ. In contrast, CTLs specific for the hematopoietic system–specific mHags HA-1 and HA-2 induced no or low GvH reactions above background and produced little or no interferon-γ, unless the skin sections were preincubated with HA-1/HA-2 synthetic peptides. These results provide the first in situ dissection of GvH effects by mHag-specific CTLs and show that ubiquitously expressed mHags are the prime targets of GvH disease.


Nature Medicine | 1999

Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease.

Tuna Mutis; Geraldine Gillespie; E. Schrama; J. H. F. Falkenburg; Paul Moss; Els Goulmy

Graft-versus-host disease (GvHD) is a chief complication of allogeneic bone marrow transplantation. In HLA-identical bone marrow transplantation, GvHD may be induced by disparities in minor histocompatibility antigens (mHags) between the donor and the recipient, with the antigen being present in the recipient and not in the donor. Cytotoxic T lymphocytes (CTLs) specific for mHags of the recipients can be isolated from the blood of recipients with severe GvHD (ref. 3). A retrospective study demonstrated an association between mismatch for mHags HA-1, -2, -4 and -5 and the occurrence of GvHD in adult recipients of bone marrow from HLA genotypically identical donors. Tetrameric HLA-peptide complexes have been used to visualize and quantitate antigen-specific CTLs in HIV-infected individuals and during Epstein-Barr virus and lymphocytic choriomeningitis virus infections. Here we show the direct ex vivo visualization of mHag-specific CTLs during GvHD using tetrameric HLA-class and I-mHag HA-1 and HY peptide complexes. In the peripheral blood of 17 HA-1 or HY mismatched marrow recipients, HA-1- and HY-specific CTLs were detected as early as 14 days after bone marrow transplantation. The tetrameric complexes demonstrated a significant increase in HA-1- and HY-specific CTLs during acute and chronic GvHD, which decreased after successful GvHD treatment. HLA class I–mHag peptide tetramers may serve as clinical tools for the diagnosis and monitoring of GvHD patients.


Current Opinion in Immunology | 1996

HUMAN MINOR HISTOCOMPATIBILITY ANTIGENS

Els Goulmy

Disparities in minor histocompatibility antigens between HLA-matched organ and bone marrow donors and recipients create a potential risk for graft failure and graft-versus-host disease. These conditions necessitate lifelong pharmacological immunosuppression of organ and bone marrow transplant recipients. Recent technical advances have resulted in the identification of the chemical nature of the first human minor histocompatibility antigens. A new era of research has begun to provide insights into the genetics of minor antigens and their putative role in transplantation.


Journal of Experimental Medicine | 2004

Minor H Antigen HA-1–specific Regulator and Effector CD8+ T Cells, and HA-1 Microchimerism, in Allograft Tolerance

Junchao Cai; Junglim Lee; Ewa Jankowska-Gan; Richard Derks; Jos Pool; Tuna Mutis; Els Goulmy; William J. Burlingham

The role of the hematopoietic lineage-restricted minor histocompatibility (H) antigen HA-1 in renal allograft tolerance was explored. We obtained peripheral blood samples from three recipients of histocompatibility leukocyte antigen (HLA)–matched, HA-1–mismatched renal transplants, one of which had discontinued immunosuppression >30 yr ago while sustaining normal kidney function. Peripheral blood mononuclear cells (PBMCs) were injected into the footpads of severe combined immunodeficiency mice to measure human delayed type hypersensitivity (DTH) responses. All three patients manifested regulated DTH responses to HA-1H peptide. By differential tetramer staining intensities, we observed two distinct minor H antigen HA-1–specific CD8+ T cell subsets. The one that stained dimly had the characteristics of a T regulatory (TR) cell and produced interleukin (IL) 10 and/or transforming growth factor (TGF) β. These HA-1–specific TR cells coexisted with bright tetramer-binding CD8+ T effector (TE) cells. The CD8+ TE cells mediated HA-1–specific DTH and produced interferon-γ. Suppression of these TE functions by TR cells was TGFβ, IL-10, and cytotoxic T lymphocyte–associated antigen 4 dependent. In addition, HA-1 microchimerism was detected in two recipients, primarily in the dendritic cell fraction of the PBMCs. This is the first demonstration of coexisting CD8+ memory TR and TE cells, both specific for the same HA-1 antigen, in the context of renal allograft tolerance.


The Lancet | 2003

Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation

Eric Spierings; Corine Vermeulen; Mario Hermann Johannes Vogt; Lucie E E Doerner; J.H. Frederik Falkenburg; Tuna Mutis; Els Goulmy

BACKGROUND Stem-cell grafts between HLA-identical siblings are less likely to succeed when there is a sex mismatch. This lack of success can be interpreted as enhanced activity directed against minor histocompatibility antigens encoded by the Y chromosome (H-Y). So far, in man, only cytotoxic T lymphocytes (CTLs) specific for several minor histocompatibility antigens have been reported. We aimed to identify and clarify the role of MHC class II-restricted H-Y-specific T-helper cells in these transplant settings. METHODS H-Y-specific MHC class II-restricted CD4+ T cells were isolated from blood of a female patient who rejected an HLA-identical male stem-cell transplant. By molecular cloning of H-Y genes and functional T-helper experiments, we elucidated antigen specificity and the functional properties of these H-Y-specific T-helper cells. FINDINGS CD4+ T-helper cells recognise the Y gene-encoded peptide VIKVNDTVQI presented by HLA-DRbeta3*0301. These T-helper cells mature dendritic cells and enhance expansion of minor histocompatibility antigen-specific MHC class I-restricted CD8+ CTLs. INTERPRETATION Characterisation of an MHC class II-restricted H-Y epitope that evoked CD4+ T-helper responses adds a novel cellular component to the alloimmune response against Y chromosome-encoded minor histocompatibility antigens. This component completes the H-Y-directed alloimmune response and aids understanding of the poorer outcome of sex-mismatched transplants.


Journal of Immunology | 2001

The HA-2 Minor Histocompatibility Antigen Is Derived from a Diallelic Gene Encoding a Novel Human Class I Myosin Protein

Richard A. Pierce; Erin D. Field; Tuna Mutis; Tatiana N. Golovina; Chris Von Kap-Herr; M. Wilke; Jos Pool; Jeffrey Shabanowitz; Mark J. Pettenati; Laurence C. Eisenlohr; Donald F. Hunt; Els Goulmy; Victor H. Engelhard

Human minor histocompatibility Ags (mHag) present significant barriers to successful bone marrow transplantation. However, the structure of human mHag and the basis for antigenic disparities are still largely unknown. Here we report the identification of the gene encoding the human mHag HA-2 as a previously unknown member of the class I myosin family, which we have designated MYO1G. The gene is located on the short arm of chromosome 7. Expression of this gene is limited to cells of hemopoietic origin, in keeping with the previously defined tissue expression of the HA-2 Ag. RT-PCR amplification of MYO1G from different individuals led to the identification of two genetic variants, designated MYO1GV and MYO1GM. The former encodes the peptide sequence previously shown to be the HA-2 epitope (YIGEVLVSV), whereas the latter shows a single amino acid change in this peptide (YIGEVLVSM). This change has only a modest effect on peptide binding to the class I MHC-restricted element HLA-A*0201, and a minimal impact on recognition by T cells when added exogenously to target cells. Nonetheless, as detected using either T cells or mass spectrometry, this amino acid change results in a failure of the latter peptide to be presented at the surface of cells that express MYO1GM endogenously. These studies have thus identified a new mHag-encoding gene, and thereby provide additional information about both the genetic origins of human mHag as well as the underlying basis of an Ag-positive vs Ag-negative state.


Journal of Experimental Medicine | 2002

The Hematopoietic System-specific Minor Histocompatibility Antigen HA-1 Shows Aberrant Expression in Epithelial Cancer Cells

Christoph A. Klein; Martina Wilke; Jos Pool; Corine Vermeulen; Els Blokland; Elke Burghart; Sabine Krostina; Nicole Wendler; Bernward Passlick; Gert Riethmüeller; Els Goulmy

Allogeneic stem cell transplantation (SCT) can induce curative graft-versus-tumor reactions in patients with hematological malignancies and solid tumors. The graft-versus-tumor reaction after human histocompatibility leukocyte antigen (HLA)-identical SCT is mediated by alloimmune donor T cells specific for polymorphic minor histocompatibility antigens (mHags). Among these, the mHag HA-1 was found to be restricted to the hematopoietic system. Here, we report on the HA-1 ribonucleic acid expression by microdissected carcinoma tissues and by single disseminated tumor cells isolated from patients with various epithelial tumors. The HA-1 peptide is molecularly defined, as it forms an immunogenic peptide ligand with HLA-A2 on the cell membrane of carcinoma cell lines. HA-1–specific cytotoxic T cells lyse epithelial tumor cell lines in vitro, whereas normal epithelial cells are not recognized. Thus, HA-1–specific immunotherapy combined with HLA-identical allogeneic SCT may now be feasible for patients with HA-1+ carcinomas.

Collaboration


Dive into the Els Goulmy's collaboration.

Top Co-Authors

Avatar

Jos Pool

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Els Blokland

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tuna Mutis

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric Spierings

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ellen Schrama

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jon J. van Rood

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lothar Hambach

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.H. Frederik Falkenburg

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge