Elsa B. Damonte
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elsa B. Damonte.
Current Medicinal Chemistry | 2004
Elsa B. Damonte; María C. Matulewicz; Alberto S. Cerezo
Several sulfated seaweed polysaccharides show high antiviral activity against enveloped viruses, including important human pathogens such as human immunodeficiency virus, herpes simplex virus, human cytomegalovirus, dengue virus and respiratory syncytial virus. They can be obtained in major amounts and at low costs, have low toxicity and in some cases, lack anticoagulant effects. Even if the systemic applications have many drawbacks, their structure and mode of action indicate potential for topical uses to prevent virus infection. The herpes simplex viruses attach to cells by an interaction between the envelope glycoprotein C and the cell surface heparan sulfate (HS). The virus-cell complex is formed by ionic interactions between the anionic (mainly sulfate) groups in the polysaccharide and basic amino acids of the glycoprotein, and non-ionic ones depending on hydrophobic amino acids interspersed between the basic ones in the glycoprotein-binding zone. Hypothesis are advanced of the corresponding hydrophobic structures in the polysaccharides. The antiviral activity of the sulfated seaweed polysaccharides is based on the formation of formally similar complexes that block the interaction of the viruses with the cells. Correlations are established between different structural parameters and antiviral activity. The minimal, ionic and hydrophobic, structures in the seaweed polysaccharides were hypothesized by comparison of the polysaccharides with the known minimal binding structure in HS/heparin, together with a correlation between those structures of the polysaccharides and their antiviral activity.
Archive | 2007
Carlos A. Pujol; María J. Carlucci; María C. Matulewicz; Elsa B. Damonte
The inhibitory action of polyanionic substances on virus replication was reported more than 50 years ago. Seaweeds, marine invertebrates, and higher plants represent abundant sources of novel compounds of proved antiviral activity. Natural sulfated polysaccharides (SPs) are potent in vitro inhibitors of a wide variety of enveloped viruses, such as herpes simplex virus (HSV) types 1 and 2, human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), dengue virus (DENV), respiratory syncytial virus (RSV), and influenza A virus. Several polysulfate compounds have the potential to inhibit virus replication by blocking the virion binding to the host cell. In contrast, their in vivo efficacy in animal and human systemic infections has undesirable drawbacks, such as poor absorption, toxic side effects, inability to reach target tissues, and anticoagulant properties. At the present time, SPs have been tested in clinical trials as topical microbicides to prevent sexually transmitted diseases caused by diverse pathogens including viruses, bacteria, fungi, and parasites. The resistance to antiviral agents that arises during drug treatment is one of the reasons for the continuous search for new compounds. In this respect, SPs are considered suitable tools to prevent viral infections in humans and to be used as a new strategy for antiviral chemotherapy.
Antiviral Research | 2009
María C. Artuso; Paula C. Ellenberg; Luis Scolaro; Elsa B. Damonte; Cybele C. García
Abstract Junín virus (JUNV), the etiological agent of the Argentine hemorrhagic fever, has a single-stranded RNA genome with ambisense expression which encodes for five proteins. In previous works we have demonstrated that the Z arenavirus matrix protein represents an attractive target for antiviral therapy. With the aim of studying a new alternative therapeutic mechanism, four Z-specific siRNAs (Z1- to Z4-siRNAs) were tested showing variable efficacy. The most effective inhibitor was Z2-siRNA targeted at the region encompassed by nt 179–197 of Z gene. The efficacy of this Z2-siRNA against JUNV was also demonstrated in virus-infected cells, by testing infectious virus plaque formation (92.8% JUNV yield reduction), viral RNA level or antigen expression, as well as in cells transfected with Z-specific reporter plasmids (91% reduction in expression of Z-EGFP fusion protein). Furthermore, the lack of effect of this Z-siRNA on the expression of other JUNV proteins, such as N and GPC, confirmed the specificity of action exerted by Z2-siRNA on Z transcript. Thus, the present study represents the first report of virus inhibition mediated by RNA interference for a New World arenavirus.
Zeitschrift für Naturforschung C | 2007
Alejandra T. Fazio; Mónica T. Adler; María D. Bertoni; Claudia S. Sepúlveda; Elsa B. Damonte; Marta S. Maier
Lichens and spore-derived cultured mycobionts of Teloschistes chrysophthalmus and Ramalina celastri were studied chemically, and results indicated that they produced, respectively, parietin and usnic acid as major secondary metabolites, which were purified and identified. Identification of the compounds was performed by high performance liquid chromatography and structural elucidation by nuclear magnetic resonance (1H) and electron impact mass spectrometry. Usnic acid exhibited antiviral activity whereas parietin had a virucidal effect against the arenaviruses Junín and Tacaribe
Viruses | 2012
Florencia N. Linero; Claudia S. Sepúlveda; Federico Giovannoni; Viviana Castilla; Cybele C. García; Luis Scolaro; Elsa B. Damonte
Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.
Biochemical and Biophysical Research Communications | 2010
Cybele C. García; Ivan Topisirovic; Mahmoud Djavani; Katherine L. B. Borden; Elsa B. Damonte; Maria S. Salvato
The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.
Journal of General Virology | 2000
Nora Lopez; Luis Scolaro; Carlos Rossi; Rodrigo Jácamo; Nélida Candurra; Carlos A. Pujol; Elsa B. Damonte; María T. Franze-Fernández
Tacaribe virus (TACV) is an arenavirus that is genetically and antigenically closely related to Junin virus (JUNV), the aetiological agent of Argentine haemorrhagic fever (AHF). It is well established that TACV protects experimental animals fully against an otherwise lethal challenge with JUNV. To gain information on the nature of the antigens involved in cross-protection, recombinant vaccinia viruses were constructed that express the glycoprotein precursor (VV-GTac) or the nucleocapsid protein (VV-N) of TACV. TACV proteins expressed by vaccinia virus were indistinguishable from authentic virus proteins by gel electrophoresis. Guinea pigs inoculated with VV-GTac or VV-N elicited antibodies that immunoprecipitated authentic TACV proteins. Antibodies generated by VV-GTac neutralized TACV infectivity. Levels of antibodies after priming and boosting with recombinant vaccinia virus were comparable to those elicited in TACV infection. To evaluate the ability of recombinant vaccinia virus to protect against experimental AHF, guinea pigs were challenged with lethal doses of JUNV. Fifty per cent of the animals immunized with VV-GTac survived, whereas all animals inoculated with VV-N or vaccinia virus died. Having established that the heterologous glycoprotein protects against JUNV challenge, a recombinant vaccinia virus was constructed that expresses JUNV glycoprotein precursor (VV-GJun). The size and reactivity to monoclonal antibodies of the vaccinia virus-expressed and authentic JUNV glycoproteins were indistinguishable. Seventy-two per cent of the animals inoculated with two doses of VV-GJun survived lethal JUNV challenge. Protection with either VV-GJun or VV-GTac occurred in the presence of low or undetectable levels of neutralizing antibodies to JUNV.
Future Virology | 2008
Eliana Gisela Acosta; Laura B. Talarico; Elsa B. Damonte
Dengue virus is an expanding public health problem in tropical and subtropical regions of the world, mainly owing to failure in the maintenance of control programs for the mosquito vector Aedes aegypti and increasing and unplanned urbanization. It has been estimated that over 50 million dengue virus infections of varying severity occur globally each year, making this virus the most significant mosquito-borne human pathogen. However, there is no specific antiviral therapy or vaccine for treatment or prevention. This review focuses on recent data describing the putative molecules and mechanisms involved in the complex process of dengue virus binding and entry into mosquito and mammalian cells in primary infections. Furthermore, the perspectives of these early events in the virus life cycle as a target for antidengue therapeutic strategies are also considered. Dengue virus (DENV) is a mosquito-borne member of the genus Flavivirus, family Flaviviridae, which includes many important human
Current Medicinal Chemistry | 2013
Claudia S. Sepúlveda; Mirta L. Fascio; Cybele C. García; Norma B. D'Accorso; Elsa B. Damonte
Acridones are a class of compounds that have attracted attention in recent years for their wide range of biological properties, including selective inhibition of diverse human pathogenic viruses. The wide spectrum of antiviral activity includes DNA and RNA viruses, such as herpes simplex virus, cytomegalovirus, adenovirus, hepatitis C virus, dengue virus, and Junin virus, among others, indicative of the involvement of cellular factors as potential targets of acridone derivatives. At the present, their precise mode of action is not clearly determined, although the predominant action seems to be centered on the synthesis of nucleic acids. Regarding this point, inhibitory activity against cellular and viral enzymes and the ability to intercalate into nucleic acid molecules was demonstrated for some acridone compounds. Then, the possibility of a multiple effect on different targets renewed interest in these agents for virus chemotherapy allowing a potent inhibitory effectiveness associated to less feasibility of generating antiviral resistance. This review summarizes the current knowledge regarding the methods of synthesis, the antiviral properties of acridone derivatives, their mechanism of action, and structural characteristics related to antiviral activity as well as the perspectives of this class of compounds for clinical application against human viral infections.
Journal of Cellular Physiology | 2016
Laurence Booth; Jane L. Roberts; Heath Ecroyd; Sarah R. Tritsch; Sina Bavari; St. Patrick Reid; Stefan Proniuk; Alexander Zukiwski; Abraham Jacob; Claudia S. Sepúlveda; Federico Giovannoni; Cybele C. García; Elsa B. Damonte; Javier González-Gallego; María J. Tuñón; Paul Dent
We have recently demonstrated that AR‐12 (OSU‐03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR‐12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR‐12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α—dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over‐expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR‐12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR‐12—stimulated the co‐localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug‐induced autophagosome formation and reduced the anti‐viral protection afforded by AR‐12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR‐12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR‐12 acts as a broad‐specificity anti‐viral drug in vitro and in vivo. We argue future patient studies with AR‐12 are warranted. J. Cell. Physiol. 231: 2286–2302, 2016.