Elsio A. Wunder
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elsio A. Wunder.
Infection and Immunity | 2009
Gerald L. Murray; Amporn Srikram; David E. Hoke; Elsio A. Wunder; Rebekah Henry; Miranda Lo; Kunkun Zhang; Rasana W. Sermswan; Albert I. Ko; Ben Adler
ABSTRACT Leptospira interrogans is responsible for leptospirosis, a zoonosis of worldwide distribution. LipL32 is the major outer membrane protein of pathogenic leptospires, accounting for up to 75% of total outer membrane protein. In recent times LipL32 has become the focus of intense study because of its surface location, dominance in the host immune response, and conservation among pathogenic species. In this study, an lipL32 mutant was constructed in L. interrogans using transposon mutagenesis. The lipL32 mutant had normal morphology and growth rate compared to the wild type and was equally adherent to extracellular matrix. Protein composition of the cell membranes was found to be largely unaffected by the loss of LipL32, with no obvious compensatory increase in other proteins. Microarray studies found no obvious stress response or upregulation of genes that may compensate for the loss of LipL32 but did suggest an association between LipL32 and the synthesis of heme and vitamin B12. When hamsters were inoculated by systemic and mucosal routes, the mutant caused acute severe disease manifestations that were indistinguishable from wild-type L. interrogans infection. In the rat model of chronic infection, the LipL32 mutant colonized the renal tubules as efficiently as the wild-type strain. In conclusion, this study showed that LipL32 does not play a role in either the acute or chronic models of infection. Considering the abundance and conservation of LipL32 among all pathogenic Leptospira spp. and its absence in saprophytic Leptospira, this finding is remarkable. The role of this protein in leptospiral biology and pathogenesis thus remains elusive.
Infection and Immunity | 2008
Julio Croda; Cláudio Pereira Figueira; Elsio A. Wunder; Cleiton S. Santos; Mitermayer G. Reis; Albert I. Ko; Mathieu Picardeau
ABSTRACT The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spcr) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
PLOS Neglected Tropical Diseases | 2016
Derrick E. Fouts; Michael A. Matthias; Haritha Adhikarla; Ben Adler; Luciane Amorim-Santos; Douglas E. Berg; Dieter M. Bulach; Alejandro Buschiazzo; Yung Fu Chang; Renee L. Galloway; David A. Haake; Daniel H. Haft; Rudy A. Hartskeerl; Albert I. Ko; Paul N. Levett; James Matsunaga; Ariel E. Mechaly; Jonathan M. Monk; Ana L. T. O. Nascimento; Karen E. Nelson; Bernhard O. Palsson; Sharon J. Peacock; Mathieu Picardeau; Jessica N. Ricaldi; Janjira Thaipandungpanit; Elsio A. Wunder; X. Frank Yang; Jun Jie Zhang; Joseph M. Vinetz
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Infection and Immunity | 2011
Kristel Lourdault; Gustavo M. Cerqueira; Elsio A. Wunder; Mathieu Picardeau
ABSTRACT Leptospira interrogans is the causative agent of leptospirosis, which is an emerging zoonotic disease. Resistance to stress conditions is largely uncharacterized for this bacterium. We therefore decided to analyze a clpB mutant that we obtained by random transposon mutagenesis. The mutant did not produce any of the two isoforms of ClpB. The clpB mutant exhibited growth defects at 30° and 37°C and in poor nutrient medium and showed increased susceptibility to oxidative stress, whereas the genetically complemented strain was restored in ClpB expression and in vitro wild-type growth. We also showed that the clpB mutant was attenuated in virulence in an animal model of acute leptospirosis. Our findings demonstrate that ClpB is involved in the general stress response. The chaperone is also necessary, either directly or indirectly, for the virulence of the pathogen L. interrogans.
PLOS Neglected Tropical Diseases | 2015
Federico Costa; Elsio A. Wunder; Daiana de Oliveira; Vimla Bisht; Gorete Rodrigues; Mitermayer G. Reis; Albert I. Ko; Michael Begon; James E. Childs
Background We address some critical but unknown parameters of individuals and populations of Norway rats (Rattus norvegicus) that influence leptospiral infection, maintenance and spirochetal loads shed in urine, which contaminates the environment ultimately leading to human infection. Methodology/Principal Findings Our study, conducted in Salvador, Brazil, established the average load of leptospires in positive kidneys to be 5.9 x 106 per mL (range 3.1-8.2 x106) genome equivalents (GEq), similar to the 6.1 x 106 per ml (range 2.2-9.4 x106) average obtained from paired urines, with a significant positive correlation (R2=0.78) between the two. Based on bivariate and multivariate modeling, we found with both kidney and urine samples that leptospiral loads increased with the age of rats (based on the index of body length to mass), MAT titer and the presence of wounding/scars, and varied with site of capture. Some associations were modified by sex but trends were apparent. Combining with data on the demographic properties and prevalence of leptospiral carriage in rat populations in Salvador, we estimated that daily leptospiral loads shed in the urine of a population of 82 individuals exceeded 9.1 x 1010 leptospires. Conclusions/Significance These factors directly influence the risk of leptospiral acquisition among humans and provide essential epidemiological information linking properties of rat populations with risk of human infection.
PLOS Neglected Tropical Diseases | 2016
José E. Hagan; Paula Moraga; Federico Costa; Nicolas Capian; Guilherme S. Ribeiro; Elsio A. Wunder; Ridalva Dias Martins Felzemburgh; Renato Barbosa Reis; Nivison Nery; Francisco S. Santana; Deborah Bittencourt Mothé Fraga; Balbino L. dos Santos; Andréia C. Santos; Adriano Queiroz; Wagner Tassinari; Marilia Sá Carvalho; Mitermayer G. Reis; Peter J. Diggle; Albert I. Ko
Background Rat-borne leptospirosis is an emerging zoonotic disease in urban slum settlements for which there are no adequate control measures. The challenge in elucidating risk factors and informing approaches for prevention is the complex and heterogeneous environment within slums, which vary at fine spatial scales and influence transmission of the bacterial agent. Methodology/Principal Findings We performed a prospective study of 2,003 slum residents in the city of Salvador, Brazil during a four-year period (2003–2007) and used a spatiotemporal modelling approach to delineate the dynamics of leptospiral transmission. Household interviews and Geographical Information System surveys were performed annually to evaluate risk exposures and environmental transmission sources. We completed annual serosurveys to ascertain leptospiral infection based on serological evidence. Among the 1,730 (86%) individuals who completed at least one year of follow-up, the infection rate was 35.4 (95% CI, 30.7–40.6) per 1,000 annual follow-up events. Male gender, illiteracy, and age were independently associated with infection risk. Environmental risk factors included rat infestation (OR 1.46, 95% CI, 1.00–2.16), contact with mud (OR 1.57, 95% CI 1.17–2.17) and lower household elevation (OR 0.92 per 10m increase in elevation, 95% CI 0.82–1.04). The spatial distribution of infection risk was highly heterogeneous and varied across small scales. Fixed effects in the spatiotemporal model accounted for the majority of the spatial variation in risk, but there was a significant residual component that was best explained by the spatial random effect. Although infection risk varied between years, the spatial distribution of risk associated with fixed and random effects did not vary temporally. Specific “hot-spots” consistently had higher transmission risk during study years. Conclusions/Significance The risk for leptospiral infection in urban slums is determined in large part by structural features, both social and environmental. Our findings indicate that topographic factors such as household elevation and inadequate drainage increase risk by promoting contact with mud and suggest that the soil-water interface serves as the environmental reservoir for spillover transmission. The use of a spatiotemporal approach allowed the identification of geographic outliers with unexplained risk patterns. This approach, in addition to guiding targeted community-based interventions and identifying new hypotheses, may have general applicability towards addressing environmentally-transmitted diseases that have emerged in complex urban slum settings.
PLOS Neglected Tropical Diseases | 2013
Carolina Lessa-Aquino; Camila Borges Rodrigues; Jozelyn Pablo; Rie Sasaki; Algis Jasinskas; Li Liang; Elsio A. Wunder; Guilherme S. Ribeiro; Adam Vigil; Ricardo Galler; Douglas M. Molina; Xiaowu Liang; Mitermayer G. Reis; Albert I. Ko; Marco Alberto Medeiros; Philip L. Felgner
Background Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease. Methodology In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results. Principal findings We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients. Conclusions Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms.
PLOS ONE | 2013
Sarah Veloso Nogueira; Brian T. Backstedt; Alexis A. Smith; Jinhong Qin; Elsio A. Wunder; Albert I. Ko; Utpal Pal
Leptospira interrogans is the agent for leptospirosis, an important zoonosis in humans and animals across the globe. Surface proteins of invading pathogens, such as L. interrogans, are thought to be responsible for successful microbial persistence in vivo via interaction with specific host components. In particular, a number of invasive infectious agents exploit host proteolytic pathways, such as one involving plasminogen (Pg), which aid in efficient pathogen dissemination within the host. Here we show that L. interrogans serovar Lai binds host Pg and that the leptospiral gene product LA1951, annotated as enolase, is involved in this interaction. Interestingly, unlike in related pathogenic Spirochetes, such as Borrelia burgdorferi, LA1951 is not readily detectable in the L. interrogans outer membrane. We show that the antigen is indeed secreted extracellularly; however, it can reassociate with the pathogen surface, where it displays Pg-binding and measurable enzymatic activity. Hamsters infected with L. interrogans also develop readily detectable antibody responses against enolase. Taken together, our results suggest that the L. interrogans enolase has evolved to play a role in pathogen interaction with host molecules, which may contribute to the pathogenesis of leptospirosis.
Infection and Immunity | 2014
Azad Eshghi; Jérôme Becam; Ambroise Lambert; Odile Sismeiro; Marie-Agnès Dillies; Bernd Jagla; Elsio A. Wunder; Albert I. Ko; Jean-Yves Coppée; Cyrille Goarant; Mathieu Picardeau
ABSTRACT Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139− mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.
Molecular Microbiology | 2016
Elsio A. Wunder; Cláudio Pereira Figueira; Nadia Benaroudj; Bo Hu; Brian A. Tong; Felipe Trajtenberg; Jun Liu; Mitermayer G. Reis; Nyles W. Charon; Alejandro Buschiazzo; Mathieu Picardeau; Albert I. Ko
Leptospira are unique among bacteria based on their helical cell morphology with hook‐shaped ends and the presence of periplasmic flagella (PF) with pronounced spontaneous supercoiling. The factors that provoke such supercoiling, as well as the role that PF coiling plays in generating the characteristic hook‐end cell morphology and motility, have not been elucidated. We have now identified an abundant protein from the pathogen L. interrogans, exposed on the PF surface, and named it Flagellar‐coiling protein A (FcpA). The gene encoding FcpA is highly conserved among Leptospira and was not found in other bacteria. fcpA‐ mutants, obtained from clinical isolates or by allelic exchange, had relatively straight, smaller‐diameter PF, and were not able to produce translational motility. These mutants lost their ability to cause disease in the standard hamster model of leptospirosis. Complementation of fcpA restored the wild‐type morphology, motility and virulence phenotypes. In summary, we identified a novel Leptospira 36‐kDa protein, the main component of the spirochetes PF sheath, and a key determinant of the flagellas coiled structure. FcpA is essential for bacterial translational motility and to enable the spirochete to penetrate the host, traverse tissue barriers, disseminate to cause systemic infection and reach target organs.