Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elsje Pienaar is active.

Publication


Featured researches published by Elsje Pienaar.


Computational Biology and Chemistry | 2007

Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis

Aaron M. Fluitt; Elsje Pienaar; Hendrik J. Viljoen

It is generally accepted that the translation rate depends on the availability of cognate aa-tRNAs. In this study it is shown that the key factor that determines translation rate is the competition between near-cognate and cognate aa-tRNAs. The transport mechanism in the cytoplasm is diffusion, thus the competition between cognate, near-cognate and non-cognate aa-tRNAs to bind to the ribosome is a stochastic process. Two competition measures are introduced; C(i) and R(i) (i=1, 64) are quotients of the arrival frequencies of near-cognates vs. cognates and non-cognates vs. cognates, respectively. Furthermore, the reaction rates of bound cognates differ from those of bound near-cognates. If a near-cognate aa-tRNA binds to the A site of the ribosome, it may be rejected at the anti-codon recognition step or proofreading step or it may be accepted. Regardless of its fate, the near-cognates and non-cognates have caused delays of varying duration to the observed rate of translation. Rate constants have been measured at a temperature of 20 degrees C by (Gromadski, K.B., Rodnina, M.V., 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191-200). These rate constants have been re-evaluated at 37 degrees C, using experimental data at 24.5 degrees C and 37 degrees C (Varenne, S., et al., 1984. Translation in a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549-576). The key results of the study are: (i) the average time (at 37 degrees C) to add an amino acid, as defined by the ith codon, to the nascent peptide chain is: tau(i)=9.06+1.445x[10.48C(i)+0.5R(i)] (in ms); (ii) the misreading frequency is directly proportional to the near-cognate competition, E(i)=0.0009C(i); (iii) the competition from near-cognates, and not the availability of cognate aa-tRNAs, is the most important factor that determines the translation rate - the four codons with highest near-cognate competition (in the case of E. coli) are [GCC]>[CGG]>[AGG]>[GGA], which overlap only partially with the rarest codons: [AGG]<[CCA]<[GCC]<[CAC]; (iv) based on the kinetic rates at 37 degrees C, the average time to insert a cognate amino acid is 9.06ms and the average delay to process a near-cognate aa-tRNA is 10.45ms and (vii) the model also provides estimates of the vacancy times of the A site of the ribosome - an important factor in frameshifting.


Computational Biology and Chemistry | 2008

Brief Communication: A fundamental study of the PCR amplification of GC-rich DNA templates

Tarlan Mamedov; Elsje Pienaar; Scott E. Whitney; Joel R. Termaat; G. Carvill; R. Goliath; Anuradha Subramanian; Hendrik J. Viljoen

A theoretical analysis is presented with experimental confirmation to conclusively demonstrate the critical role that annealing plays in efficient PCR amplification of GC-rich templates. The analysis is focused on the annealing of primers at alternative binding sites (competitive annealing) and the main result is a quantitative expression of the efficiency (eta) of annealing as a function of temperature (T(A)), annealing period (t(A)), and template composition. The optimal efficiency lies in a narrow region of T(A) and t(A) for GC-rich templates and a much broader region for normal GC templates. To confirm the theoretical findings, the following genes have been PCR amplified from human cDNA template: ARX and HBB (with 78.72% and 52.99% GC, respectively). Theoretical results are in excellent agreement with the experimental findings. Optimum annealing times for GC-rich genes lie in the range of 3-6s and depend on annealing temperature. Annealing times greater than 10s yield smeared PCR amplified products. The non-GC-rich gene did not exhibit this sensitivity to annealing times. Theory and experimental results show that shorter annealing times are not only sufficient but can actually aid in more efficient PCR amplification of GC-rich templates.


Journal of Theoretical Biology | 2015

A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment

Elsje Pienaar; Nicholas A. Cilfone; Philana Ling Lin; Véronique Dartois; Joshua T. Mattila; J. Russell Butler; JoAnne L. Flynn; Denise E. Kirschner; Jennifer J. Linderman

While active tuberculosis (TB) is a treatable disease, many complex factors prevent its global elimination. Part of the difficulty in developing optimal therapies is the large design space of antibiotic doses, regimens and combinations. Computational models that capture the spatial and temporal dynamics of antibiotics at the site of infection can aid in reducing the design space of costly and time-consuming animal pre-clinical and human clinical trials. The site of infection in TB is the granuloma, a collection of immune cells and bacteria that form in the lung, and new data suggest that penetration of drugs throughout granulomas is problematic. Here we integrate our computational model of granuloma formation and function with models for plasma pharmacokinetics, lung tissue pharmacokinetics and pharmacodynamics for two first line anti-TB antibiotics. The integrated model is calibrated to animal data. We make four predictions. First, antibiotics are frequently below effective concentrations inside granulomas, leading to bacterial growth between doses and contributing to the long treatment periods required for TB. Second, antibiotic concentration gradients form within granulomas, with lower concentrations toward their centers. Third, during antibiotic treatment, bacterial subpopulations are similar for INH and RIF treatment: mostly intracellular with extracellular bacteria located in areas non-permissive for replication (hypoxic areas), presenting a slowly increasing target population over time. Finally, we find that on an individual granuloma basis, pre-treatment infection severity (including bacterial burden, host cell activation and host cell death) is predictive of treatment outcome.


Computational Biology and Chemistry | 2006

A quantitative model of error accumulation during PCR amplification

Elsje Pienaar; M. Theron; M. B. Nelson; Hendrik J. Viljoen

The amplification of target DNA by the polymerase chain reaction (PCR) produces copies which may contain errors. Two sources of errors are associated with the PCR process: (1) editing errors that occur during DNA polymerase-catalyzed enzymatic copying and (2) errors due to DNA thermal damage. In this study a quantitative model of error frequencies is proposed and the role of reaction conditions is investigated. The errors which are ascribed to the polymerase depend on the efficiency of its editing function as well as the reaction conditions; specifically the temperature and the dNTP pool composition. Thermally induced errors stem mostly from three sources: A+G depurination, oxidative damage of guanine to 8-oxoG and cytosine deamination to uracil. The post-PCR modifications of sequences are primarily due to exposure of nucleic acids to elevated temperatures, especially if the DNA is in a single-stranded form. The proposed quantitative model predicts the accumulation of errors over the course of a PCR cycle. Thermal damage contributes significantly to the total errors; therefore consideration must be given to thermal management of the PCR process.


BMC Systems Biology | 2015

In silico evaluation and exploration of antibiotic tuberculosis treatment regimens

Elsje Pienaar; Véronique Dartois; Jennifer J. Linderman; Denise E. Kirschner

BackgroundImprovement in tuberculosis treatment regimens requires selection of antibiotics and dosing schedules from a large design space of possibilities. Incomplete knowledge of antibiotic and host immune dynamics in tuberculosis granulomas impacts clinical trial design and success, and variations among clinical trials hamper side-by-side comparison of regimens. Our objective is to systematically evaluate the efficacy of isoniazid and rifampin regimens, and identify modifications to these antibiotics that improve treatment outcomes.ResultsWe pair a spatio-temporal computational model of host immunity with pharmacokinetic and pharmacodynamic data on isoniazid and rifampin. The model is calibrated to plasma pharmacokinetic and granuloma bacterial load data from non-human primate models of tuberculosis and to tissue and granuloma measurements of isoniazid and rifampin in rabbit granulomas. We predict the efficacy of regimens containing different doses and frequencies of isoniazid and rifampin. We predict impacts of pharmacokinetic/pharmacodynamic modifications on antibiotic efficacy. We demonstrate that suboptimal antibiotic concentrations within granulomas lead to poor performance of intermittent regimens compared to daily regimens. Improvements from dose and frequency changes are limited by inherent antibiotic properties, and we propose that changes in intracellular accumulation ratios and antimicrobial activity would lead to the most significant improvements in treatment outcomes. Results suggest that an increased risk of drug resistance in fully intermittent as compared to daily regimens arises from higher bacterial population levels early during treatment.ConclusionsOur systems pharmacology approach complements efforts to accelerate tuberculosis therapeutic development.


Infection and Immunity | 2016

Multiscale Model of Mycobacterium tuberculosis Infection Maps Metabolite and Gene Perturbations to Granuloma Sterilization Predictions

Elsje Pienaar; William M. Matern; Jennifer J. Linderman; Joel S. Bader; Denise E. Kirschner

ABSTRACT Granulomas are a hallmark of tuberculosis. Inside granulomas, the pathogen Mycobacterium tuberculosis may enter a metabolically inactive state that is less susceptible to antibiotics. Understanding M. tuberculosis metabolism within granulomas could contribute to reducing the lengthy treatment required for tuberculosis and provide additional targets for new drugs. Two key adaptations of M. tuberculosis are a nonreplicating phenotype and accumulation of lipid inclusions in response to hypoxic conditions. To explore how these adaptations influence granuloma-scale outcomes in vivo, we present a multiscale in silico model of granuloma formation in tuberculosis. The model comprises host immunity, M. tuberculosis metabolism, M. tuberculosis growth adaptation to hypoxia, and nutrient diffusion. We calibrated our model to in vivo data from nonhuman primates and rabbits and apply the model to predict M. tuberculosis population dynamics and heterogeneity within granulomas. We found that bacterial populations are highly dynamic throughout infection in response to changing oxygen levels and host immunity pressures. Our results indicate that a nonreplicating phenotype, but not lipid inclusion formation, is important for long-term M. tuberculosis survival in granulomas. We used virtual M. tuberculosis knockouts to predict the impact of both metabolic enzyme inhibitors and metabolic pathways exploited to overcome inhibition. Results indicate that knockouts whose growth rates are below ∼66% of the wild-type growth rate in a culture medium featuring lipid as the only carbon source are unable to sustain infections in granulomas. By mapping metabolite- and gene-scale perturbations to granuloma-scale outcomes and predicting mechanisms of sterilization, our method provides a powerful tool for hypothesis testing and guiding experimental searches for novel antituberculosis interventions.


CPT: Pharmacometrics & Systems Pharmacology | 2015

Systems Pharmacology Approach Toward the Design of Inhaled Formulations of Rifampicin and Isoniazid for Treatment of Tuberculosis

Nicholas A. Cilfone; Elsje Pienaar; Denise E. Kirschner; Jennifer J. Linderman

Conventional oral therapies for the treatment of tuberculosis are limited by poor antibiotic distribution in granulomas, which contributes to lengthy treatment regimens and inadequate bacterial sterilization. Inhaled formulations are a promising strategy to increase antibiotic efficacy and reduce dose frequency. We develop a multiscale computational approach that accounts for simultaneous dynamics of a lung granuloma, carrier release kinetics, pharmacokinetics, and pharmacodynamics. Using this computational platform, we predict that a rationally designed inhaled formulation of isoniazid given at a significantly reduced dose frequency has better sterilizing capabilities and reduced toxicity than the current oral regimen. Furthermore, we predict that inhaled formulations of rifampicin require unrealistic carrier antibiotic loadings that lead to early toxicity concerns. Lastly, we predict that targeting carriers to macrophages has limited effects on treatment efficacy. Our platform can be extended to account for additional antibiotics and provides a new tool for rapidly prototyping the efficacy of inhaled formulations.


Computational Biology and Chemistry | 2010

Research article: A model of tuberculosis transmission and intervention strategies in an urban residential area

Elsje Pienaar; Aaron M. Fluitt; Scott E. Whitney; Alison G. Freifeld; Hendrik J. Viljoen

The model herein aims to explore the dynamics of the spread of tuberculosis (TB) in an informal settlement or township. The population is divided into households of various sizes and also based on commuting status. The model dynamics distinguishes between three distinct social patterns: the exposure of commuters during travel, random diurnal interaction and familial exposure at night. Following the general SLIR models, the population is further segmented into susceptible (S), exposed/latently infected (L), active/infectious (I), and recovered (R) individuals. During the daytime, commuters travel on public transport, while non-commuters randomly interact in the community to mimic chance encounters with infectious persons. At night, each family interacts and sleeps together in the home. The risk of exposure to TB is based on the proximity, duration, and frequency of encounters with infectious persons. The model is applied to a hypothetical population to explore the effects of different intervention strategies including vaccination, wearing of masks during the commute, prophylactic treatment of latent infections and more effective case-finding and treatment. The most important findings of the model are: (1) members of larger families are responsible for more disease transmissions than those from smaller families, (2) daily commutes on public transport provide ideal conditions for transmission of the disease, (3) improved diagnosis and treatment has the greatest impact on the spread of the disease, and (4) detecting TB at the first clinic visit, when patients are still smear negative, is key.


Journal of Microbiological Methods | 2009

Gene synthesis by integrated polymerase chain assembly and PCR amplification using a high-speed thermocycler

Joel R. Termaat; Elsje Pienaar; Scott E. Whitney; Tarlan Mamedov; Anuradha Subramanian

Polymerase chain assembly (PCA) is a technique used to synthesize genes ranging from a few hundred base pairs to many kilobase pairs in length. In traditional PCA, equimolar concentrations of single stranded DNA oligonucleotides are repeatedly hybridized and extended by a polymerase enzyme into longer dsDNA constructs, with relatively few full-length sequences being assembled. Thus, traditional PCA is followed by a second primer-mediated PCR reaction to amplify the desired full-length sequence to useful, detectable quantities. Integration of assembly and primer-mediated amplification steps into a single reaction using a high-speed thermocycler is shown to produce similar results. For the integrated technique, the effects of oligo concentration, primer concentration, and number of oligonucleotides are explored. The technique is successfully demonstrated for the synthesis of two genes encoding EPCR-1 (653bp) and pUC19 beta-lactamase (929bp) in under 20min. However, rapid integrated PCA-PCR was found to be problematic when attempted with the TM-1 gene (1509bp). Partial oligonucleotide sets of TM-1 could be assembled and amplified simultaneously, indicating that the technique may be limited to a maximum number of oligonucleotides due to competitive annealing and competition for primers.


PLOS Computational Biology | 2017

Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach

Elsje Pienaar; Jansy Sarathy; Brendan Prideaux; Jillian Dietzold; Véronique Dartois; Denise E. Kirschner; Jennifer J. Linderman

Granulomas are complex lung lesions that are the hallmark of tuberculosis (TB). Understanding antibiotic dynamics within lung granulomas will be vital to improving and shortening the long course of TB treatment. Three fluoroquinolones (FQs) are commonly prescribed as part of multi-drug resistant TB therapy: moxifloxacin (MXF), levofloxacin (LVX) or gatifloxacin (GFX). To date, insufficient data are available to support selection of one FQ over another, or to show that these drugs are clinically equivalent. To predict the efficacy of MXF, LVX and GFX at a single granuloma level, we integrate computational modeling with experimental datasets into a single mechanistic framework, GranSim. GranSim is a hybrid agent-based computational model that simulates granuloma formation and function, FQ plasma and tissue pharmacokinetics and pharmacodynamics and is based on extensive in vitro and in vivo data. We treat in silico granulomas with recommended daily doses of each FQ and compare efficacy by multiple metrics: bacterial load, sterilization rates, early bactericidal activity and efficacy under non-compliance and treatment interruption. GranSim reproduces in vivo plasma pharmacokinetics, spatial and temporal tissue pharmacokinetics and in vitro pharmacodynamics of these FQs. We predict that MXF kills intracellular bacteria more quickly than LVX and GFX due in part to a higher cellular accumulation ratio. We also show that all three FQs struggle to sterilize non-replicating bacteria residing in caseum. This is due to modest drug concentrations inside caseum and high inhibitory concentrations for this bacterial subpopulation. MXF and LVX have higher granuloma sterilization rates compared to GFX; and MXF performs better in a simulated non-compliance or treatment interruption scenario. We conclude that MXF has a small but potentially clinically significant advantage over LVX, as well as LVX over GFX. We illustrate how a systems pharmacology approach combining experimental and computational methods can guide antibiotic selection for TB.

Collaboration


Dive into the Elsje Pienaar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hendrik J. Viljoen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Whitney

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Joel R. Termaat

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron M. Fluitt

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Anuradha Subramanian

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Tarlan Mamedov

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Tobias M. Louw

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge