Elvira Galarraga
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elvira Galarraga.
Journal of Neurophysiology | 2008
Luis Carrillo-Reid; Fatuel Tecuapetla; Dagoberto Tapia; Arturo Hernández-Cruz; Elvira Galarraga; René Drucker-Colín; José Bargas
Correlated activity in cortico-basal ganglia circuits plays a key role in the encoding of movement, associative learning and procedural memory. How correlated activity is assembled by striatal microcircuits is not understood. Calcium imaging of striatal neuronal populations, with single-cell resolution, reveals sporadic and asynchronous activity under control conditions. However, N-methyl-d-aspartate (NMDA) application induces bistability and correlated activity in striatal neurons. Widespread neurons within the field of observation present burst firing. Sets of neurons exhibit episodes of recurrent and synchronized bursting. Dimensionality reduction of network dynamics reveals functional states defined by cell assemblies that alternate their activity and display spatiotemporal pattern generation. Recurrent synchronous activity travels from one cell assembly to the other often returning to the original assembly; suggesting a robust structure. An initial search into the factors that sustain correlated activity of neuronal assemblies showed a critical dependence on both intrinsic and synaptic mechanisms: blockage of fast glutamatergic transmission annihilates all correlated firing, whereas blockage of GABAergic transmission locked the network into a single dominant state that eliminates assembly diversity. Reduction of L-type Ca(2+)-current restrains synchronization. Each cell assembly comprised different cells, but a small set of neurons was shared by different assemblies. A great proportion of the shared neurons was local interneurons with pacemaking properties. The network dynamics set into action by NMDA in the striatal network may reveal important properties of striatal microcircuits under normal and pathological conditions.
The Journal of Physiology | 2003
Ramiro Vergara; Caroline Rick; Salvador Hernandez-Lopez; J. A. Laville; Jaime N. Guzman; Elvira Galarraga; Dalton J. Surmeier; José Bargas
In a rat corticostriatal slice, brief, suprathreshold, repetitive cortical stimulation evoked long‐lasting plateau potentials in neostriatal neurons. Plateau potentials were often followed by spontaneous voltage transitions between two preferred membrane potentials. While the induction of plateau potentials was disrupted by non‐NMDA and NMDA glutamate receptor antagonists, the maintenance of spontaneous voltage transitions was only blocked by NMDA receptor and L‐type Ca2+ channel antagonists. The frequency and duration of depolarized events, resembling up‐states described in vivo, were increased by NMDA and L‐type Ca2+ channel agonists as well as by GABAA receptor and K+ channel antagonists. NMDA created a region of negative slope conductance and a positive slope crossing indicative of membrane bistability in the current‐voltage relationship. NMDA‐induced bistability was partially blocked by L‐type Ca2+ channel antagonists. Although evoked by synaptic stimulation, plateau potentials and voltage oscillations could not be evoked by somatic current injection – suggesting a dendritic origin. These data show that NMDA and L‐type Ca2+ conductances of spiny neurons are capable of rendering them bistable. This may help to support prolonged depolarizations and voltage oscillations under certain conditions.
Synapse | 1997
Jorge Flores-Hernandez; Elvira Galarraga; José Bargas
Glutamatergic synaptic potentials induced by micromolar concentrations of the potassium conductance blocker 4‐aminopyridine (4‐AP) were recorded intracellularly from rat neostriatal neurons in the presence of 10 μM bicuculline (BIC). These synaptic potentials originate from neostriatal cortical and thalamic afferents and were completely blocked by 10 μM 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) plus 100 μM D‐2‐amino‐5‐phosphonovaleric acid (2‐APV). Their inter‐event time intervals could be fitted to exponential distributions, suggesting that they are induced randomly. Their amplitude distributions had most counts around 1 mV and fewer counts with values up to 5 mV. Since input resistance of the recorded neurons is about 40 MΩ, the amplitudes agree to quantal size measurements in mammalian central neurons. The action of a D2 agonist, quinpirole, was studied on the frequency of these events. Mean amplitude of synaptic potentials was preserved in the presence of 2–10 μM quinpirole, but the frequency of 4‐AP‐induced glutamatergic synaptic potentials was reduced in 35% of cases. The effect was blocked by the D2 antagonist sulpiride (10 μM). Input resistance, membrane potential, or firing threshold did not change during quinpirole effect, suggesting a presynaptic site of action for quinpirole in some but not all glutamatergic afferents that make contact on a single cell. The present experiments show that dopaminergic presynaptic modulation of glutamatergic transmission in the neostriatum does not affect all stimulated afferents, suggesting that it is selective towards some of them. This may control the quality and quantity of afferent flow upon neostriatal neurons. Synapse 25:185–195, 1997.
Experimental Brain Research | 1989
José Bargas; Elvira Galarraga; J. Aceves
SummaryAn in vitro slice preparation was used to obtain intracellular recordings of neostriatal neurons. Indirect evidence for the presence of an early outward conductance in neostriatal neurons is presented. With near threshold stimulation neostriatal neurons fired very late during the pulse. The long firing latency was associated with a slow (ramp-like) depolarization. In the presence of TTX the slow depolarization was lost and outward-going rectification dominated the subthreshold response. This finding demonstrated that both, outward and inwardgoing conductances play a role during the ramp-like depolarization. Outward-going rectification during depolarizing responses could be further augmented if the depolarizing stimulus was preceded by a conditioning hyperpolarization. A conditioning hyperpolarization prolonged the firing latency and slowed the firing frequency. A conditioning depolarization had opposite effects. After TTX treatment, the response showed a hyperpolarizing “sag” when depolarizing stimulation was preceded by conditioning hyperpolarization. 4-AP (0.5–2.5 mM) blocked the effects of the conditioning hyperpolarization on the firing latency and on the voltage trajectory. 4-AP also disclosed a slow depolarization which could produce neuronal firing very early during the pulse. This depolarization was TTX-sensitive and Co++-insensitive. In contrast to 4-AP, TEA (20 mM) did not produce a reduction in the firing latency but disclosed a membrane oscillatory behavior most probably produced by the interplay of these opposing conductances: the slow inward (probably Na+) and the transient outward (probably K+). Repetitive firing during 4-AP treatment was of the “phasictonic” type with an initial burst riding on the initial Co++-insensitive slow depolarization and a somehow irregular train of spikes during the remainder of the stimulation. Action potentials during 4-AP treatment were followed by an afterdepolarization which dominated the initial part of the interspike interval.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Fatuel Tecuapetla; Luis Carrillo-Reid; José Bargas; Elvira Galarraga
Circuit properties, such as the selection of motor synergies, have been posited as relevant tasks for the recurrent inhibitory synapses between spiny projection neurons of the neostriatum, a nucleus of the basal ganglia participating in procedural learning and voluntary motor control. Here we show how the dopaminergic system regulates short-term plasticity (STP) in these synapses. STP is thought to endow neuronal circuits with computational powers such as gain control, filtering, and the emergence of transitory net states. But little is known about STP regulation. Employing unitary and population synaptic recordings, we observed that activation of dopamine receptors can modulate STP between spiny neurons. A D1-class agonist enhances, whereas a D2-class agonist decreases, short-term depression most probably by synaptic redistribution. Presynaptic receptors appear to be responsible for this modulation. In contrast, STP between fast-spiking interneurons and spiny projection neurons is largely unregulated despite expressing presynaptic receptors. Thus, the present experiments provide an explanation for dopamine actions at the circuit level: the control of STP between lateral connections of output neurons and the reorganization of the balance between different forms of inhibitory transmission. Theoretically, D1 receptors would promote a sensitive, responsive state for temporal precision (dynamic component), whereas D2 receptors would sense background activity (static component).
Neuroscience Letters | 1987
Elvira Galarraga; José Bargas; Daniel Martinez-Fong; Jorge Aceves
Intracellular spontaneous activity was recorded in neostriatal slices from rats with 6-hydroxydopamine-induced lesion of the left nigrostriatal dopaminergic system. Recordings were made at different times after denervation. Dopaminergic denervation caused the appearance of spontaneous synaptic potentials, which were present even after 8 months. The results suggest a tonic inhibitory influence of the dopaminergic innervation on the synaptic input of neostriatal neurons.
Experimental Brain Research | 1996
M. T. Pacheco-Cano; José Bargas; Salvador Hernandez-Lopez; Dagoberto Tapia; Elvira Galarraga
Intracellular recordings in in vitro slice preparations of rat brain were used to compare the actions of dopamine and dopamine receptor agonists on the subthreshold membrane properties of neostriatal neurons. A reproducible response for dopaminergic agonists was evoked after firing produced by current ramp injections that induced a subthreshold voltage displacement. Dopamine (10–100 μM) decreased both firing rate and membrane slope input resistance in virtually all cells tested. Input resistance change appeared as an increase in inward rectification. Approximate reversal potential was around -87 mV. The D1 receptor agonists SKF 38393 and C1-APB (1–10 μM) mimicked both dopamine effects with a reversal potential around -89 mV. The effects were blocked by the presence of 5–10 μM caesium (Cs+) but not by 1 μM tetrodotoxin, suggesting that main D1 effects on input resistance are due to subthreshold Cs+ sensitive conductances. cAMP analogues mimicked the actions of D1 receptor agonists. The D2 agonist, quinpirole (1–10 μM), did not produce any input resistance change, nonetheless, it still produced a decrease in firing rate. This suggests that the main D2 effect on firing is due to actions on suprathreshold ion conductances. All effects were blocked by D1 and D2 antagonists, respectively. D1 or D2 effects were found in the majority of cells tested.
Frontiers in Systems Neuroscience | 2010
Edén Flores-Barrera; Bianca J. Vizcarra-Chacón; Dagoberto Tapia; José Bargas; Elvira Galarraga
The striatum is the principal input structure of the basal ganglia. Major glutamatergic afferents to the striatum come from the cerebral cortex and make monosynaptic contacts with medium spiny projection neurons (MSNs) and interneurons. Also: glutamatergic afferents to the striatum come from the thalamus. Despite differences in axonal projections, dopamine (DA) receptors expression and differences in excitability between MSNs from “direct” and “indirect” basal ganglia pathways, these neuronal classes have been thought as electrophysiologically very similar. Based on work with bacterial artificial chromosome (BAC) transgenic mice, here it is shown that corticostriatal responses in D1- and D2-receptor expressing MSNs (D1- and D2-MSNs) are radically different so as to establish an electrophysiological footprint that readily differentiates between them. Experiments in BAC mice allowed us to predict, with high probability (P > 0.9), in rats or non-BAC mice, whether a recorded neuron, from rat or mouse, was going to be substance P or enkephalin (ENK) immunoreactive. Responses are more prolonged and evoke more action potentials in D1-MSNs, while they are briefer and exhibit intrinsic autoregenerative responses in D2-MSNs. A main cause for these differences was the interaction of intrinsic properties with the inhibitory contribution in each response. Inhibition always depressed corticostriatal depolarization in D2-MSNs, while it helped in sustaining prolonged depolarizations in D1-MSNs, in spite of depressing early discharge. Corticostriatal responses changed dramatically after striatal DA depletion in 6-hydroxy-dopamine (6-OHDA) lesioned animals: a response reduction was seen in substance P (SP)+ MSNs whereas an enhanced response was seen in ENK+ MSNs. The end result was that differences in the responses were greatly diminished after DA depletion.
Experimental Brain Research | 1989
Elvira Galarraga; José Bargas; A. Sierra; J. Aceves
SummaryThe Ca++-dependence of the repetitive firing of neostriatal neurons was studied in an in vitro slice preparation of the rat neostriatum. Neuronal firing was evoked by injecting depolarizing currents of 100–200 ms duration. In normal conditions, the mode of firing was tonic and showed very little adaptation. The frequency-current relation was linear over a wide range of frequencies. The repetitive firing was first enhanced and later suppressed by Co++, Mn++ and Cd++. These effects on the repetitive firing by the Ca++-channel blockers paralleled the suppression of the slow afterhyperpolarizing potential. The lowering (0.2 mM) of Ca++ had similar effects. In the presence of TEA (up to 10 mM), the cell fired both Na+ and Ca+ action potentials. The results suggest that, as in other CNS neurons of the vertebrate, in neostriatal neurons the slow afterhyperpolarizing potential (AHP) is due to a Ca++-activated K+-conductance, and that the AHP plays a crucial role in the repetitive firing of these neurons.
The Journal of Neuroscience | 2012
Julieta Garduño; Luis Galindo-Charles; Javier Jiménez-Rodríguez; Elvira Galarraga; Dagoberto Tapia; Stefan Mihailescu; Salvador Hernandez-Lopez
Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10–20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.