Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elvira Roda is active.

Publication


Featured researches published by Elvira Roda.


Brain Structure & Function | 2015

Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

Salvador Sierra; Natasha Luquin; Alberto J. Rico; Virginia Gómez-Bautista; Elvira Roda; Iria G. Dopeso-Reyes; Alfonso Vázquez; Eva Martínez-Pinilla; Jose L. Labandeira-Garcia; Rafael Franco; José L. Lanciego

Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R–CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R–CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R–CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.


Neurobiology of Disease | 2010

A direct projection from the subthalamic nucleus to the ventral thalamus in monkeys

Alberto J. Rico; Pedro Barroso-Chinea; Lorena Conte-Perales; Elvira Roda; Virginia Gómez-Bautista; Miriam Gendive; Jose A. Obeso; José L. Lanciego

The current basal ganglia model considers the internal division of the globus pallidus and the substantia nigra pars reticulata as the sole sources of basal ganglia output to the thalamus. However, following the delivery of retrograde tracers into the ventral anterior/ventral lateral thalamic nuclei, a moderate number of labeled neurons were found within the subthalamic nucleus (STN) in control cases, MPTP-treated monkeys and animals with levodopa-induced dyskinesias. Furthermore, dual tracing experiments showed that subthalamo-thalamic and subthalamo-pallidal projections arise from different subpopulations of STN efferent neurons. Moreover, upregulated expression of the mRNA coding the vesicular glutamate transporter 2 (vGlut2) was found in retrogradely-labeled STN neurons in MPTP-treated monkeys. By contrast, there is a reduction in vGlut2 mRNA expression in subthalamo-thalamic neurons in dyskinetic monkeys. In conclusion, our findings support the presence of a direct projection from the STN to the ventral thalamus that appears to be functionally modulated by dopaminergic activity.


Experimental Neurology | 2014

CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum

Eva Martínez-Pinilla; Irene Reyes-Resina; A. Oñatibia-Astibia; Marta Zamarbide; A. Ricobaraza; Gemma Navarro; Estefanía Moreno; Iria G. Dopeso-Reyes; Salvador Sierra; Alberto J. Rico; Elvira Roda; José L. Lanciego; Rafael Franco

Heteromerization of G-protein-coupled receptors is an important event as they integrate the actions of extracellular signals to give heteromer-selective ligand binding and signaling, opening new avenues in the development of potential drug targets in pharmacotherapy. The aim of the present paper was to check for cannabinoid CB1-GPR55 receptor heteromers in the central nervous system (CNS), specifically in striatum. First, a direct interaction was demonstrated in cells transfected with the cDNA for the human version of the receptors, using bioluminescence resonance energy transfer and in situ proximity ligation assays (PLA). In the heterologous system, a biochemical fingerprint consisting on cross-antagonism in ERK1/2 phosphorylation was detected. The cross-antagonism was also observed on GPR55-mediated NFAT activation. Direct identification of GPR55 receptors in striatum is here demonstrated in rat brain slices using a specific agonist. Moreover, the heteromer fingerprint was identified in these rat slices by ERK1/2 phosphorylation assays whereas PLA assays showed results consistent with receptor-receptor interactions in both caudate and putamen nuclei of a non-human primate. The results indicate not only that GPR55 is expressed in striatum but also that CB1 and GPR55 receptors form heteromers in this specific CNS region.


Neurobiology of Disease | 2008

Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease

Pedro Barroso-Chinea; Alberto J. Rico; Mónica Pérez-Manso; Elvira Roda; Iciar P. López; Diego Luis-Ravelo; José L. Lanciego

GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons.


Brain Structure & Function | 2011

Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism

Pedro Barroso-Chinea; Alberto J. Rico; Lorena Conte-Perales; Virginia Gómez-Bautista; Natasha Luquin; Salvador Sierra; Elvira Roda; José L. Lanciego

The tegmental pedunculopontine nucleus (PPN) is a basal ganglia-related structure that has recently gained renewed interest as a potential surgical target for the treatment of several aspects of Parkinson’s disease. However, the underlying anatomical substrates sustaining the choice of the PPN nucleus as a surgical candidate remain poorly understood. Here, we characterized the chemical phenotypes of different subtypes of PPN efferent neurons innervating the rat parafascicular (PF) nucleus. Emphasis was placed on elucidating the impact of unilateral nigrostriatal denervation on the expression patterns of the mRNA coding the vesicular glutamate transporter type 2 (vGlut2 mRNA). We found a bilateral projection from the PPN nucleus to the PF nucleus arising from cholinergic and glutamatergic efferent neurons, with a small fraction of projection neurons co-expressing both cholinergic and glutamatergic markers. Furthermore, the unilateral nigrostriatal depletion induced a bilateral twofold increase in the expression levels of vGlut2 mRNA within the PPN nucleus. Our results support the view that heterogeneous chemical profiles account for PPN efferent neurons innervating thalamic targets. Moreover, a bilateral enhancement of glutamatergic transmission arising from the PPN nucleus occurs following unilateral dopaminergic denervation, therefore sustaining the well-known hyperactivity of the PF nucleus in parkinsonian-like conditions. In conclusion, our data suggest that the ascending projections from the PPN that reach basal ganglia-related targets could play an important role in the pathophysiology of Parkinson’s disease.


Frontiers in Neuroanatomy | 2014

Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques

Iria G. Dopeso-Reyes; Alberto J. Rico; Elvira Roda; Salvador Sierra; Diego Pignataro; Maria Lanz; Diego Sucunza; Luis Chang-Azancot; José L. Lanciego

Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv) co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB) into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.


Brain Structure & Function | 2017

Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation.

Alberto J. Rico; Iria G. Dopeso-Reyes; Eva Martínez-Pinilla; Diego Sucunza; Diego Pignataro; Elvira Roda; David Marín-Ramos; Jose L. Labandeira-Garcia; Susan R. George; Rafael Franco; José L. Lanciego

Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1–D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1–D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1–D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1–D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1–D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1–D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1–D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1–D2 heteromers. Interestingly, macromolecular complexes of D1–D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.


Journal of Neuroscience Methods | 2010

Neuroanatomical tracing combined with in situ hybridization: Analysis of gene expression patterns within brain circuits of interest

Lorena Conte-Perales; Pedro Barroso-Chinea; Alberto J. Rico; Virginia Gómez-Bautista; Iciar P. López; Elvira Roda; Floris G. Wouterlood; José L. Lanciego

Most of our current understanding of brain circuits is based on hodological studies carried out using neuroanatomical tract-tracing. Our aim is to advance one step further by visualizing the functional correlate in a given circuit. In this regard, we believe it is feasible to combine retrograde tracing with fluorescence, non-radioactive in situ hybridization (ISH) protocols. The subsequent detection at the single-cell level of the expression of a given mRNA within retrograde-labeled neurons provides information regarding cellular function. This may be of particular interest when trying to elucidate the performance of brain circuits of interest in animal models of brain diseases. Several combinations of retrograde tracing with either single- and double-ISH are presented here, together with some criteria that influence the selection of the tracer to be used in conjunction with the strong demands of the ISH.


Journal of Neural Transmission | 2018

Gene therapy approaches in the non-human primate model of Parkinson’s disease

Diego Pignataro; Diego Sucunza; Alberto J. Rico; Iria G. Dopeso-Reyes; Elvira Roda; Ana I. Rodriguez-Perez; Jose L. Labandeira-Garcia; Vania Broccoli; Shigeki Kato; Kazuto Kobayashi; José L. Lanciego

The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic l-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.


Neurobiology of Disease | 2012

Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB)

Natasha Luquin; Salvador Sierra; Alberto J. Rico; Virginia Gómez-Bautista; Elvira Roda; Lorena Conte-Perales; Rafael Franco; Peter J. McCormick; Jose L. Labandeira-Garcia; José L. Lanciego

The A(2A)R has become a therapeutic target in Parkinson disease due to its functional role in the striatum, capable of modulating dopaminergic neurotransmission in the basal ganglia. No conclusive evidence, however, has been provided to demonstrate the existence of A(2A)Rs in the output nuclei of the basal ganglia: the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). Using immunohistochemistry and in situ hybridization techniques we have confirmed the presence of A(2A)Rs in both the striatum (medium spiny and cholinergic neurons) and the external segment of the globus pallidus (GPe), in the monkey. The antibody routinely used to label A(2A)Rs failed to detect A(2A)R-positive neurons in the GPi and SNr, however, in situ hybridization showed that A(2A)R mRNA transcripts were indeed present in both these nuclei. Surprisingly, by labeling pallidothalamic and nigrothalamic projection neurons originating in the GPi and SNr with the neuronal retrograde tracer cholera toxin subunit B (CTB), the receptor protein was unmasked and detectable using the antibody. This unmasking of the protein was specific to CTB and not an artifact of the tracer. We have shown unequivocally that the A(2A)R is present in the output nuclei of the primate basal ganglia, however, to be able to detect the receptor immunohistochemically, unmasking the protein with CTB was necessary. The presence of A(2A)Rs in the GPi and SNr suggests that these output nuclei could be targeted therapeutically in Parkinson disease to restore abnormal activity in the basal ganglia.

Collaboration


Dive into the Elvira Roda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose L. Labandeira-Garcia

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge