Elvira Vaclavik Bräuner
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elvira Vaclavik Bräuner.
Environmental Health Perspectives | 2007
Elvira Vaclavik Bräuner; Lykke Forchhammer; Peter Møller; Jacob Simonsen; Marianne Glasius; Peter Wåhlin; Ole Raaschou-Nielsen; Steffen Loft
Background Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. Objective We investigated oxidative damage to DNA and related repair capacity in peripheral blood mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. Design Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. Methods The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were measured by the Comet assay. mRNA levels of OGG1, nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), and heme oxygenase-1 (HO1) were determined by real-time reverse transcriptase–polymerase chain reaction. Results Exposure to UFPs for 6 and 24 hr significantly increased the levels of SBs and FPG sites, with a further insignificant increase after physical exercise. The OGG1 activity and expression of OGG1, NUDT1, and HO1 were unaltered. There was a significant dose–response relationship between NC and DNA damage, with the 57-nm mode as the major contributor to effects. Concomitant exposure to ozone, nitrogen oxides, and carbon monoxide had no influence. Conclusion Our results indicate that UFPs, especially the 57-nm soot fraction from vehicle emissions, causes systemic oxidative stress with damage to DNA and no apparent compensatory up-regulation of DNA repair within 24 hr.
Cancer Letters | 2008
Peter Møller; Janne Kjærsgaard Folkmann; Lykke Forchhammer; Elvira Vaclavik Bräuner; Pernille Høgh Danielsen; Lotte Risom; Steffen Loft
There is growing concern that air pollution exposure increases the risk of lung cancer. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Humans exposed to urban air with vehicle emissions have elevated levels of oxidized guanine bases in blood cells and urine. Animal experimental studies show that pulmonary and gastrointestinal exposure is associated with elevated levels of oxidized guanines in the lung and other organs. Collectively, there is evidence indicating that exposure to traffic-related air pollution particles is associated with oxidative damage to DNA and this might be associated with increased risk of cancer.
Particle and Fibre Toxicology | 2008
Elvira Vaclavik Bräuner; Peter Møller; Lars Barregard; Lars O. Dragsted; Marianne Glasius; Peter Wåhlin; Peter Vinzents; Ole Raaschou-Nielsen; Steffen Loft
BackgroundParticulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein oxidation.MethodsTwenty-nine subjects participated in a randomized, two-factor crossover study with or without biking exercise for 180 minutes and with 24 hour exposure to particle rich (number concentrations, NC: 11600 ± 5600 per cm3, mass concentrations: 13.8 ± 7.4 μg/m3 and 10.5 ± 4.8 μg/m3 for PM10-2.5 and PM2.5, respectively) or particle filtered (NC: 555 ± 1053 per cm3) air collected above a busy street. Microvascular function was assessed non-invasively by measuring digital peripheral artery tone following arm ischemia. Biomarkers included haemoglobin, red blood cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor α, lag time to copper-induced oxidation of plasma lipids and protein oxidation measured as 2-aminoadipic semialdehyde in plasma.ResultsNo statistically significant differences were observed on microvascular function or the biomarkers after exposure to particle rich or particle filtered air.ConclusionThis study indicates that exposure to air pollution particles at outdoor concentrations is not associated with detectable systemic inflammation, lipid or protein oxidation, altered haemostasis or microvascular function in young healthy participants.
Mutagenesis | 2008
Lykke Forchhammer; Elvira Vaclavik Bräuner; Janne Kjærsgaard Folkmann; Pernille Høgh Danielsen; Claus J. Nielsen; Annie Jensen; Steffen Loft; Gitte Friis; Peter Møller
The comet assay is popular for assessments of genotoxicity, but the comparison of results between studies is challenging because of differences in experimental procedures and reports of DNA damage in different units. We investigated the variation of DNA damage in mononuclear blood cells (MNBCs) measured by the comet assay with focus on the variation related to alkaline unwinding and electrophoresis time, number of cells scored, as well as the putative benefits of transforming the primary end points to common units by the use of reference standards and calibration curves. Eight experienced investigators scored pre-made slides of nuclei differently, but each investigator scored constantly over time. Scoring of 200 nuclei per treatment was associated with the lowest residual variation. Alkaline unwinding for 20 or 40 min and electrophoresis for 20 or 30 min yielded different dose-response relationships of cells exposed to gamma-radiation and it was possible to reduce the variation in oxidized purines in MNBCs from humans by adjusting the level of lesions with protocol-specific calibration curves. However, there was a difference in the level of DNA damage measured by different investigators and this variation could not be reduced by use of investigator-specific calibration curves. The mean numbers of lesions per 10(6) bp in MNBCs from seven humans were 0.23 [95% confidence interval (CI): 0.14-0.33] and 0.31 (95% CI: 0.20-0.55) for strand breaks (SBs) and oxidized guanines, respectively. In conclusion, our results indicate that inter-investigator difference in scoring is a strong determinant of DNA damage levels measured by the comet assay.
Environmental Health Perspectives | 2014
Elvira Vaclavik Bräuner; Rikke Baastrup Nordsborg; Zorana Jovanovic Andersen; Anne Tjønneland; Steffen Loft; Ole Raaschou-Nielsen
Background: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. Objective: We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. Methods: During 1993–1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. Results: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. Conclusions: Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes. Citation: Bräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O. 2014. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the Diet, Cancer and Health cohort. Environ Health Perspect 122:1059–1065; http://dx.doi.org/10.1289/ehp.1408198
Environmental Health Perspectives | 2011
Elvira Vaclavik Bräuner; Mette Sørensen; Eric Gaudreau; Alain LeBlanc; Kirsten Thorup Eriksen; Anne Tjønneland; Kim Overvad; Ole Raaschou-Nielsen
Background: Exposure to organochlorines has been examined as a potential risk factor for non-Hodgkin lymphoma (NHL), with inconsistent results that may be related to limited statistical power or to imprecise exposure measurements. Objective: Our purpose was to examine associations between organochlorine concentrations in prediagnostic adipose tissue samples and the risk of NHL. Methods: We conducted a case–cohort study using a prospective Danish cohort of 57,053 persons enrolled between 1993 and 1997. Within the cohort we identified 256 persons diagnosed with NHL in the population-based nationwide Danish Cancer Registry and randomly selected 256 subcohort persons. We measured concentrations of 8 pesticides and 10 polychlorinated biphenyl (PCB) congeners in adipose tissue collected upon enrollment. Associations between the 18 organochlorines and NHL were analyzed in Cox regression models, adjusting for body mass index. Results: Incidence rate ratios and confidence intervals (CIs) for interquartile range increases in concentrations of dichlorodiphenyltrichlorethane (DDT), cis-nonachlor, and oxychlordane were 1.35 (95% CI: 1.10, 1.66), 1.13 (95% CI: 0.94, 1.36), and 1.11 (95% CI: 0.89, 1.38), respectively, with monotonic dose–response trends for DDT and cis-nonachlor based on categorical models. The relative risk estimates were higher for men than for women. In contrast, no clear association was found between NHL and PCBs. Conclusion: We found a higher risk of NHL in association with higher adipose tissue levels of DDT, cis-nonachlor, and oxychlordane, but no association with PCBs. This is the first study of organochlorines and NHL using prediagnostic adipose tissue samples in the exposure assessment and provides new environmental health evidence that these organochlorines contribute to NHL risk.
Inhalation Toxicology | 2009
Elvira Vaclavik Bräuner; Jann Mortensen; Peter Møller; Alfred Bernard; Peter Vinzents; Peter Wåhlin; Marianne Glasius; Steffen Loft
Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This studys objective was too evaluate the effects of ambient particle exposure on the blood–gas permeability, lung function and Clara cell 16 (CC16) protein release in healthy young subjects. Twenty-nine nonsmokers participated in a randomized, two-factor crossover study with or without biking exercise for 180 min and with 24-h exposure to particle-rich (6169–15,362 particles/cm3; 7.0–11.6 μg/m3 PM2.5; 7.5–15.8 μg/m3 PM10−2.5) or filtered (91–542 particles/cm3) air collected above a busy street. The clearance rate of aerosolized 99mTc-labeled diethylenetriamine pentaacetic acid (99mTc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood–gas barrier after rush-hour exposure. Lung function was assessed using body plethysmography, flow-volume curves, and measurements of the diffusion capacity of carbon monoxide. CC16 was measured in plasma and urine as another marker of alveolar integrity. Particulate matter exposure had no significant effect on the epithelial membrane integrity using the methods available in this study. Exercise increased the clearance rate of 99mTc-DTPA indicated by a 6.8% (95% CI: 0.4–12.8%) shorter half-life and this was more pronounced in men than women. Neither particulate matter exposure nor exercise had an effect on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood–gas barrier following moderate exercise, whereas exposure to ambient levels of urban air particles has no detectable effects on the alveolar blood–gas barrier or lung function.
Human Reproduction Update | 2016
Jens Peter Bonde; Esben Meulengracht Flachs; Susie Rimborg; Clara Helene Glazer; Aleksander Giwercman; Cecilia Høst Ramlau-Hansen; Karin Sørig Hougaard; Birgit Bjerre Høyer; Katia Keglberg Hærvig; Sesilje Bondo Petersen; Lars Rylander; Ina Olmer Specht; Gunnar Toft; Elvira Vaclavik Bräuner
BACKGROUND More than 20 years ago, it was hypothesized that exposure to prenatal and early postnatal environmental xenobiotics with the potential to disrupt endogenous hormone signaling might be on the causal path to cryptorchidism, hypospadias, low sperm count and testicular cancer. Several consensus statements and narrative reviews in recent years have divided the scientific community and have elicited a call for systematic transparent reviews. We aimed to fill this gap in knowledge in the field of male reproductive disorders. OBJECTIVE AND RATIONALE The aim of this study was to systematically synthesize published data on the risk of cryptorchidism, hypospadias, low sperm counts and testicular cancer following in utero or infant exposure to chemicals that have been included on the European Commissions list of Category 1 endocrine disrupting chemicals defined as having documented adverse effects due to endocrine disruption in at least one intact organism. SEARCH METHODS A systematic literature search for original peer reviewed papers was performed in the databases PubMed and Embase to identify epidemiological studies reporting associations between the outcomes of interest and exposures documented by biochemical analyses of biospecimens including maternal blood or urine, placenta or fat tissue as well as amnion fluid, cord blood or breast milk; this was followed by meta-analysis of quantitative data. OUTCOMES The literature search resulted in 1314 references among which we identified 33 papers(28 study populations) fulfilling the eligibility criteria. These provided 85 risk estimates of links between persistent organic pollutants and rapidly metabolized compounds (phthalates and Bisphenol A) and male reproductive disorders. The overall odds ratio (OR) across all exposures and outcomes was 1.11 (95% CI 0.91–1.35). When assessing four specific chemical subgroups with sufficient data for meta-analysis for all outcomes, we found that exposure to one of the four compounds, p,p′-DDE, was related to an elevated risk: OR 1.35 (95% CI 1.04–1.74). The data did not indicate that this increased risk was driven by any specific disorder. WIDER IMPLICATIONS The current epidemiological evidence is compatible with a small increased risk of male reproductive disorders following prenatal and postnatal exposure to some persistent environmental chemicals classified as endocrine disruptors but the evidence is limited. Future epidemiological studies may change the weight of the evidence in either direction. No evidence of distortion due to publication bias was found, but exposure–response relationships are not evident. There are insufficient data on rapidly metabolized endocrine disruptors and on specific exposure–outcome relations. A particular data gap is evident with respect to delayed effects on semen quality and testicular cancer. Although high quality epidemiological studies are still sparse, future systematic and transparent reviews may provide pieces of evidence contributing to the narrative and weight of the evidence assessments in the field.
Genes and Immunity | 2012
Elvira Vaclavik Bräuner; Steffen Loft; Ole Raaschou-Nielsen; Ulla Vogel; Paw Andersen; Mette Sørensen
The first common genetic factor identified for pediatric asthma by genome-wide association is the chromosome 17q21 locus, harbouring the ORMDL3 gene. ORMDL3 is involved in facilitation of endoplasmic reticulum-mediated inflammatory responses, believed to underlie its asthma association. We investigated associations between the rs7216389 polymorphism in the 17q21 locus affecting ORMDL3 expression and the risk for recurrent wheeze and interactions with exposure to tobacco smoke and furred pets during pregnancy and infancy using a birth cohort of 101 042 infants. Rs7216389 was significantly associated with recurrent wheeze risk among 18-month-old infants. There was a 1.35-fold higher risk of recurrent wheeze among homozygous variant allele carriers compared with homozygous wild-type allele carriers. There was significant interaction between rs7216389 and domestic furred pets, with a positive association between pets and wheeze among homozygous wild-type carriers and a negative association among homozygous variant allele carriers. There was no interaction between rs7216389 and tobacco smoke exposure.
Journal of Exposure Science and Environmental Epidemiology | 2012
Elvira Vaclavik Bräuner; Ole Raaschou-Nielsen; Eric Gaudreau; Alain LeBlanc; Anne Tjønneland; Kim Overvad; Mette Sørensen
Organochlorine pesticides are ubiquitously present in the environment and suspected of carcinogenic, neurological and immunological effects. Our objective was to identify determinants of adipose tissue levels of organochlorine pesticides experienced by a general Danish population. Adipose tissue was collected upon enrolment of 245 randomly selected persons from a prospective cohort of 57,053 persons enrolled between 1993 and 1997. We examined geography, gender, age, lactation, body mass index (BMI) and intake of nine dietary groups and tap water drinks, as potential determinants of dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, hexachlorocyclohexane, dieldrin, hexachlorobenzene, cis-nonachlor, trans-nonachlor and oxychlordane. Living in Copenhagen city and age at enrolment showed positive associations with all compounds. BMI was positively associated with all compounds except cis-nonachlor. Fatty-fish consumption showed positive associations with cis-nonachlor, trans-nonachlor, DDT and dieldrin and fruit and vegetables were inversely associated with dieldrin. Determinant estimates of trans-nonachlor were similar to estimates of total chlordanes while cis-nonachlor and oxychlordane seemed to differ. This is one of the first studies of organochlorine pesticides predictors in adipose tissue and contributes to the ongoing debate about exposure sources of these compounds. Single determinants varied among the individual compounds, even within related chlordane residues, suggesting that organochlorine pesticides should not be treated as a homogenous group.