Elyes Zhioua
University of Rhode Island
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elyes Zhioua.
Journal of Parasitology | 1997
Elyes Zhioua; Marsha Browning; Paul W. Johnson; Howard S. Ginsberg; Roger A. LeBrun
The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 10(8)/ml for engorged larvae and 10(7)/ml for engorged females resulted in 100% tick mortality, 2 wk postinfection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 10(7) spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.
Journal of Medical Entomology | 2002
Michael A. Benjamin; Elyes Zhioua; Richard S. Ostfeld
Abstract Unfed adult Ixodes scapularis Say were treated with spores of the entomopathogenic fungus Metarhizium anisopliae Metschnikoff in the laboratory and in the field. An M. anisopliae suspension containing 4 × 109 spores per milliliter caused 96% mortality in the laboratory, versus 53% mortality among field-treated ticks. The LC50 value for unfed adult I. scapularis in the laboratory was 4 × 107 spores per milliliter. Our results indicate that M. anisopliae was highly pathogenic to unfed adult ticks and showed potential for controlling questing adult I. scapularis.
Journal of Medical Entomology | 2005
Howard S. Ginsberg; P. A. Buckley; Maxon G. Balmforth; Elyes Zhioua; Shaibal Mitra; Francine G. Buckley
Abstract Reservoir competence for the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American robin, gray catbird, brown thrasher, eastern towhee, song sparrow, and northern cardinal. Wild birds collected by mist netting on Fire Island, NY, were held in a field laboratory in cages over water and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by direct fluorescent-antibody staining after molting to the nymphal stage. American robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared with 0% of control ticks placed on uninfected laboratory mice. Robins that were previously infected in the laboratory by nymphal feeding infected 81.8% of applied larvae. Wild-caught song sparrows infected 4.8% of applied larvae and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for northern cardinals, lower levels for gray catbirds, and little evidence of reservoir competence for eastern towhees or brown thrashers. Lower infection rates in larvae applied to wild-caught birds compared with birds infected in the laboratory suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.
Environmental Entomology | 2004
Howard S. Ginsberg; Elyes Zhioua; Shaibal Mitra; Jason L. Fischer; P. A. Buckley; Frank Verret; H. Brian Underwood; Francine G. Buckley
Abstract Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.
Experimental and Applied Acarology | 1996
Howard S. Ginsberg; Elyes Zhioua
The distribution and survival of Ixodes scapularis and Amblyomma americanum were studied in deciduous and coniferous wooded habitats and in open habitats on Fire Island, New York, USA. The survival of nymphal I. scapularis in field enclosures was greater in forests than in open habitats, suggesting that greater survival contributes to the higher tick population in the woods. The nymphs of each species were more common in deciduous thickets (predominantly Aronia arbutifolia and Vaccinium corynbosum) than in coniferous woods (mostly Pinus rigida) in most but not all years. Larval I. scapularis were more common in coniferous sites in 1994, while the same ticks, as nymphs, were more common in deciduous sites in 1995. The survival of the nymphs was not consistently greater in either the deciduous or coniferous woods. Therefore, factors other than nymphal survival (e.g. larval overwintering survival and tick movement on hosts) probably influenced the relative nymph abundance in different forest types. Overall, the survival of A. americanum was far higher than that of I. scapularis.
Environmental Entomology | 2002
Howard S. Ginsberg; Roger A. LeBrun; Klaus Heyer; Elyes Zhioua
Abstract The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guérin-Méneville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4–10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.
Vector-borne and Zoonotic Diseases | 2004
Jaree L. Johnson; Howard S. Ginsberg; Elyes Zhioua; Ulysses G. Whitworth; Daniel Markowski; Kerwin E. Hyland; Renjie Hu
Data on nymphal Ixodes scapularis ticks submitted by the public to the University of Rhode Island Tick Research Laboratory for testing from 1991 to 2000 were compared with human case data from the Rhode Island Department of Health to determine the efficacy of passive tick surveillance at assessing human risk of Lyme disease. Numbers of ticks submitted were highly correlated with human cases by county (r = 0.998, n = 5 counties) and by town (r = 0.916, n = 37 towns), as were the numbers of positive ticks submitted (r = 0.989 by county, r = 0.787 by town). Human cases were correlated with ticks submitted by town each year, and with positive ticks in all but 2 years. Thus, passive tick surveillance effectively assessed geographical risk of human Lyme disease. In contrast, tick submissions through time were not correlated with human cases from year to year. Dog seropositivity was significantly correlated with human cases by county in both years tested, but by town in only one of two years. Numbers of ticks submitted were correlated with dog seropositivity by county but not by town, apparently because of high variability among towns with small sample sizes. Our results suggest that passive tick surveillance, using ticks submitted by the public for Lyme spirochete testing, can be used to assess the geographical distribution of Lyme disease risk, but cannot reliably predict Lyme incidence from year to year.
Vector-borne and Zoonotic Diseases | 2008
I. Chelbi; Belhassen Kaabi; M. Derbali; Sami Ben Hadj Ahmed; Koussay Dellagi; Elyes Zhioua
Zooprophylaxis is the use of animals to deviate vectors from humans. The indoor abundance of Phlebotomus papatasi in houses with rabbit holes in the peridomestic areas are significantly lower than the indoor abundance in houses without rabbit holes in their peridomestic areas. Introduction of rabbits in artificial underground holes in peridomestic areas reduced significantly the indoor abundance of P. papatasi. Cleaning rabbit holes in peridomestic area by removing all rabbit feces induced a significant increase in the abundance of P. papatasi inside bedrooms. The ecologic niche made around houses in endemic areas by creating active rabbit holes is a major source of attractiveness of P. papatasi, and therefore it may deviate the vector from humans to rabbits. Although rabbit holes are breeding sites for P. papatasi, rabbits are not competent reservoirs for Leishmania major. Our overall findings strongly suggest that zooprophylaxis could be effective in reducing the indoor abundance of P. papatasi and subsequently may be used to control the transmission L. major in rural areas.
Experimental and Applied Acarology | 2005
Victoria L. Hornbostel; Elyes Zhioua; Michael A. Benjamin; Howard S. Ginsberg; Richard S. Ostfeld
Abstract.Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.
American Journal of Tropical Medicine and Hygiene | 2010
Sami Ben Hadj Ahmed; Belhassen Kaabi; I. Chelbi; M. Derbali; S. Cherni; Dhafer Laouini; Elyes Zhioua
Immunity to saliva of Phlebotomus papatasi protects against Leishmania major infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female P. papatasi. We investigated the effect of pre-immunization with SGH of long-term colonized P. papatasi against L. major infection co-inoculated with SGH of wild-caught P. papatasi. Our results showed that pre-exposure to SGH of long-term, colonized P. papatasi do not confer protection against infection with L. major co-inoculated with SGH of wild-caught P. papatasi. These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure.