Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elyn R. Humphreys is active.

Publication


Featured researches published by Elyn R. Humphreys.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The uncertain climate footprint of wetlands under human pressure

A.M.R. Petrescu; Annalea Lohila; Juha-Pekka Tuovinen; Dennis D. Baldocchi; Ankur R. Desai; Nigel T. Roulet; Timo Vesala; A. J. Dolman; Walter C. Oechel; Barbara Marcolla; Thomas Friborg; Janne Rinne; Jaclyn Hatala Matthes; Lutz Merbold; Ana Meijide; Gerard Kiely; Matteo Sottocornola; Torsten Sachs; Donatella Zona; Andrej Varlagin; Derrick Y.F. Lai; Elmar M. Veenendaal; Frans-Jan Parmentier; U. Skiba; Magnus Lund; A. Hensen; Jacobus van Huissteden; Lawrence B. Flanagan; Narasinha J. Shurpali; Thomas Grünwald

Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate. Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Journal of Geophysical Research | 2011

Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog

Dimitre D. Dimitrov; R. F. Grant; Peter M. Lafleur; Elyn R. Humphreys

[1] The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near‐surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation–subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy‐covariance measurements during 2000–2004. Our findings suggest that late‐summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to −250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2–3 mmol CO2 m −2 s −1 in midday simulated and measurement‐derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near‐surface peat (top 5–10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.


Global Change Biology | 2013

Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog

Tuula Larmola; Jill L. Bubier; Christine Kobyljanec; Nathan Basiliko; Sari Juutinen; Elyn R. Humphreys; Michael D. Preston; Tim R. Moore

To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7-12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May-September 2011 using climate-controlled chambers. A substrate-induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20-30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N-only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate-induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2 . The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N-only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N-P/K colimited rather than N-limited. Negative effects of further N-only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat-forming Sphagnum.


Journal of Geophysical Research | 2014

Evidence for a nonmonotonic relationship between ecosystem‐scale peatland methane emissions and water table depth

Mathew Brown; Elyn R. Humphreys; Tim R. Moore; Nigel T. Roulet; Peter M. Lafleur

Although temporal and spatial variations in peatland methane (CH4) emissions at broad scales are often related to water table (WT) using a linear relationship, a potentially complex relationship exists between these variables locally and over shorter time scales. To explore this issue, CH4 fluxes were measured using eddy covariance at the Mer Bleue bog over two summer seasons. Peak CH4 emissions (30 to 50 mg CH4-C m−2 d−1) occurred not when the WT was closest to the surface but instead, when it dropped to 40 to 55 cm below the surface. When the WT was below or above this zone, average fluxes were ~14 mg CH4-C m−2 d−1. We speculate this critical zone coincides with the necessary redox potentials and sources of fresh organic material that lead to maximum production of CH4 and/or with conditions that lead to degassing of stored CH4. However, as expected, total summer CH4 emissions were 47% lower during the drier year. This occurred in part because the WT was within the critical zone for fewer days in the drier year but also because after an extended midsummer dry period there was little recovery of CH4 emissions, even a month after rewetting.


Environmental Science & Technology | 2012

Variation in Peak Growing Season Net Ecosystem Production Across the Canadian Arctic

Peter M. Lafleur; Elyn R. Humphreys; Vincent L. St. Louis; May C. Myklebust; Tim Papakyriakou; Laurier Poissant; J. D. Barker; Martin Pilote; Kyle Swystun

Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 μmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 μmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.


Arctic, Antarctic, and Alpine Research | 2014

Two Bogs in the Canadian Hudson Bay Lowlands and a Temperate Bog Reveal Similar Annual Net Ecosystem Exchange of CO2

Elyn R. Humphreys; Chris Charron; Mathew Brown; Randall Jones

Abstract Two ombrotrophic bogs in Canadas Hudson Bay Lowlands (HBL), an area storing an estimated 33 Gt of soil carbon, are contrasted with the Mer Bleue temperate ombrotrophic bog approximately 1000 km to the southeast to assess the net carbon dioxide (CO2) exchange between these ecosystems and the atmosphere. Peatlands in the HBL region may be impacted by not only climate change but also resource extraction practices that may cause drying of surrounding areas. Two years of eddy covariance CO2 flux measurements show the two HBL bogs to be annual sinks for CO2. Given random error and gap-filling uncertainties of 6 to 13 g C m-2 yr-1, the annual budgets of 45 to 55 g C m-2 yr-1 for the HBL bogs did not differ significantly from the temperate bogs budget of 55 g C m-2 yr-1 (in the first year) despite differences in climate and vegetation composition and abundance. The temperate bog did have significantly greater net uptake of CO2 (78 g C m-2 yr-1) in the second study year. Component fluxes of photosynthesis and respiration were much smaller at the HBL bogs and speculated to be a result of less vascular vegetation. Less growing season CO2 uptake at the HBL bogs was offset by less winter loss when compared to the temperate bog. The influence of mid-summer drying and lowered water tables was similar among all three bogs. Decreasing mid-summer net ecosystem productivity (NEP) appeared to be a result of reduced photosynthetic uptake rather than increased respiration. In the short-term, drying of the HBL peatlands might result in a decrease of their C sink strength.


Ecoscience | 2012

Microclimatic Response to Increasing Shrub Cover and Its Effect on Sphagnum CO2 Exchange in a Bog

Mandy Chong; Elyn R. Humphreys; Tim R. Moore

Abstract: We examined the effect of long-term nitrogen (plus phosphorus and potassium) fertilization, resulting in increased shrub cover, on seasonal changes in understory light, soil temperature, and soil moisture in an ombrotrophic bog. An increase in leaf area index (LAI) was negatively correlated with light transmission through the canopy, decreasing photosynthetically active radiation (PAR) reaching the peat surface by up to an average of 77% compared to unfertilized plots. Owing to the denser shrub canopy, near surface soil temperature was cooler in summer and less spatially variable within the fertilized plots. A laboratory study of the environmental controls on Sphagnum capillifolium carbon dioxide (CO2) exchange showed that there were significant interactions between moisture and temperature, but changes in CO2 exchange in response to temperature or moisture were small compared to the influence of light. These results suggest that the absence of moss in the fertilized plots may be, in part, the result of decreased light availability. Alterations to the competitive balance between the shrub and moss layer could lead to changes in C storage in these ecosystems.


Journal of Geophysical Research | 2015

Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements

R. F. Grant; Elyn R. Humphreys; P.M. Lafleur

CO2 and CH4 exchange are strongly affected by hydrology in landscapes underlain by permafrost. Hypotheses for these effects in the model ecosys were tested by comparing modeled CO2 and CH4 exchange with CO2 fluxes measured by eddy covariance from 2006 to 2009, and with CH4 fluxes measured with surface chambers in 2008, along a topographic gradient at Daring Lake, NWT. In an upland tundra, rises in net CO2 uptake in warmer years were constrained by declines in CO2 influxes when vapor pressure deficits (D) exceeded 1.5 kPa and by rises in CO2 effluxes with greater active layer depth. Consequently, net CO2 uptake rose little with warming. In a lowland fen, CO2 influxes declined less with D and CO2 effluxes rose less with warming, so that rises in net CO2 uptake were greater than those in the tundra. Greater declines in CO2 influxes with warming in the tundra were modeled from greater soil-plant-atmosphere water potential gradients that developed under higher D in drained upland soil, and smaller rises in CO2 effluxes with warming in the fen were modeled from O2 constraints to heterotrophic and belowground autotrophic respiration from a shallow water table in poorly drained lowland soil. CH4 exchange modeled during July and August indicated very small influxes in the tundra and larger effluxes characterized by afternoon emission events caused by degassing of warming soil in the fen. Emissions of CH4 modeled from degassing during soil freezing in October–November contributed about one third of the annual total.


Canadian Journal of Soil Science | 2010

Carbon dioxide and methane fluxes from Arctic mudboils

K.S. Wilson; Elyn R. Humphreys

Climate change is expected to alter the Arctic’s carbon (C) balance and changes in these C-rich ecosystems may contribute to a positive feedback on global climate change. Low-center mudboils, a form of patterned ground in the Arctic, are distinct landforms in which the exchange of greenhouse gases between the atmosphere and soil has not been fully characterized, but which may have an important influence on the overall C balance of tundra ecosystems. Chamber systems were used to sample net ecosystem exchange of CO2 (NEE) and CO2 and CH4 effluxes along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada’s Southern Arctic (lat. 64°52′N, long. 111°34′W) during the summer months in 2008. Mudboil features gave rise to dramatic variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were driven by variations in the amount of vascular vegetation, while CO2 and CH4 effluxes were remarkably similar among the two mudboil (CO...


Environmental Research Letters | 2013

Modeling the influence of snow cover on low Arctic net ecosystem exchange

Kristina A. Luus; Richard Kelly; John C. Lin; Elyn R. Humphreys; Peter M. Lafleur; Walter C. Oechel

The Arctic net ecosystem exchange (NEE) of CO2 between the land surface and the atmosphere is influenced by the timing of snow onset and melt. The objective of this study was to examine whether uncertainty in model estimates of NEE could be reduced by representing the influence of snow on NEE using remote sensing observations of snow cover area (SCA). Observations of NEE and time-lapse images of SCA were collected over four locations at a low Arctic site (Daring Lake, NWT) in May?June 2010. Analysis of these observations indicated that SCA influences NEE, and that good agreement exists between SCA derived from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over Daring Lake and Ivotuk, Alaska (2004?2007) using VPRM formulations with and without explicit representations of the influence of SCA on respiration and/or photosynthesis. Model performance was assessed by comparing VPRM output against unfilled eddy covariance observations from Daring Lake and Ivotuk (2004?2007). The uncertainty in VPRM estimates of NEE was reduced when respiration was estimated as a function of air temperature when SCA???50% and as a function of soil temperature when SCA?>?50%.

Collaboration


Dive into the Elyn R. Humphreys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ankur R. Desai

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge