Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elyshia McNamara is active.

Publication


Featured researches published by Elyshia McNamara.


Free Radical Biology and Medicine | 2011

Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors

Oliver Rackham; Anne-Marie J. Shearwood; Ross Thyer; Elyshia McNamara; Stefan M.K. Davies; Bernard A. Callus; Antonio Miranda-Vizuete; Susan J. Berners-Price; Elias S.J. Arnér; Aleksandra Filipovska

The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system, which is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered to have comparable properties, but to be functionally separated by their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, whereas TrxR1 efficiently reduced both Trx1 and Trx2. TrxR2 displayed strikingly lower activity with dithionitrobenzoic acid (DTNB), lipoamide, and the quinone substrate juglone compared to TrxR1, and TrxR2 could not reduce lipoic acid. However, Sec-deficient two-amino-acid-truncated TrxR2 was almost as efficient as full-length TrxR2 in the reduction of DTNB. We found that the gold(I) compound auranofin efficiently inhibited both full-length TrxR1 and TrxR2 and truncated TrxR2. In contrast, some newly synthesized gold(I) compounds and cisplatin inhibited only full-length TrxR1 or TrxR2 and not truncated TrxR2. Surprisingly, one gold(I) compound, [Au(d2pype)(2)]Cl, was a better inhibitor of TrxR1, whereas another, [(iPr(2)Im)(2)Au]Cl, mainly inhibited TrxR2. These compounds also inhibited TrxR activity in the cytoplasm and mitochondria of cells, but their cytotoxicity was not always dependent on the proapoptotic proteins Bax and Bak. In conclusion, this study reveals significant differences between human TrxR1 and TrxR2 in substrate specificity and metal compound inhibition in vitro and in cells, which may be exploited for development of specific TrxR1- or TrxR2-targeting drugs.


Human Molecular Genetics | 2013

Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients

Steven B. Marston; Massimiliano Memo; Andrew E. Messer; Maria Papadaki; Kristen J. Nowak; Elyshia McNamara; Royston Ong; Mohammed El-Mezgueldi; Xiaochuan Li; William Lehman

The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.


European Journal of Human Genetics | 2009

A mutation in an alternative untranslated exon of hexokinase 1 associated with Hereditary Motor and Sensory Neuropathy - Russe (HMSNR)

Janina Hantke; David Chandler; R. H. M. King; Dora Angelicheva; Ivailo Tournev; Elyshia McNamara; Marcel Kwa; Velina Guergueltcheva; Radka Kaneva; Frank Baas; Luba Kalaydjieva

Hereditary Motor and Sensory Neuropathy – Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to ∼70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to ∼26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS).


PLOS ONE | 2011

Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression

Gianina Ravenscroft; Connie Jackaman; C. Sewry; Elyshia McNamara; Sarah Squire; A Potter; John M. Papadimitriou; Lisa M. Griffiths; Anthony J. Bakker; Kay E. Davies; Nigel G. Laing; Kristen J. Nowak

Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.


Brain | 2013

K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity

Nancy Mokbel; Biljana Ilkovski; Michaela Kreissl; Massimiliano Memo; Cy M. Jeffries; M. Marttila; Vilma-Lotta Lehtokari; Elina Lemola; Mikaela Grönholm; Nan Yang; Dominique Ménard; Pascale Marcorelles; Andoni Echaniz-Laguna; Jens Reimann; Mariz Vainzof; Nicole Monnier; Gianina Ravenscroft; Elyshia McNamara; Kristen J. Nowak; Nigel G. Laing; Carina Wallgren-Pettersson; Jill Trewhella; S. B. Marston; C. Ottenheijm; Kathryn N. North; Nigel F. Clarke

Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of β-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-β-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-β-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.


Annals of Neurology | 2015

TPM3 deletions cause a hypercontractile congenital muscle stiffness phenotype

Sandra Donkervoort; Maria Papadaki; Josine M. de Winter; Matthew B. Neu; Janbernd Kirschner; V. Bolduc; Michele L. Yang; Melissa Gibbons; Ying Hu; J. Dastgir; M. Leach; Anne Rutkowski; A. Reghan Foley; Marcus Krüger; Eric P. Wartchow; Elyshia McNamara; Royston Ong; Kristen J. Nowak; Nigel G. Laing; Nigel F. Clarke; C. Ottenheijm; Steven B. Marston; Carsten G. Bönnemann

Mutations in TPM3, encoding Tpm3.12, cause a clinically and histopathologically diverse group of myopathies characterized by muscle weakness. We report two patients with novel de novo Tpm3.12 single glutamic acid deletions at positions ΔE218 and ΔE224, resulting in a significant hypercontractile phenotype with congenital muscle stiffness, rather than weakness, and respiratory failure in one patient.


Human Molecular Genetics | 2015

Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres

Michaela Yuen; Sandra T. Cooper; S. B. Marston; Kristen J. Nowak; Elyshia McNamara; Nancy Mokbel; Biljana Ilkovski; Gianina Ravenscroft; John Rendu; Josine M. de Winter; Lars Klinge; Alan H. Beggs; Kathryn N. North; C. Ottenheijm; Nigel F. Clarke

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition.


Biochimica et Biophysica Acta | 2017

Variable cardiac α-actin (Actc1) expression in early adult skeletal muscle correlates with promoter methylation

J. Boutilier; Rhonda L. Taylor; Ramesh Ram; Elyshia McNamara; Quang Nguyen; Hayley Goullee; David Chandler; Munish Mehta; Lois Balmer; Nigel G. Laing; Grant Morahan; Kristen J. Nowak

Different genes encode the α-actin isoforms that are predominantly expressed in heart and skeletal muscle. Mutations in the skeletal muscle α-actin gene (ACTA1) cause muscle diseases that are mostly lethal in the early postnatal period. We previously demonstrated that the disease phenotype of ACTA1 mouse models could be rescued by transgenic over-expression of cardiac α-actin (ACTC1). ACTC1 is the predominant striated α-actin isoform in the heart but is also expressed in developing skeletal muscle. To develop a translatable therapy, we investigated the genetic regulation of Actc1 expression. Using strains from The Collaborative Cross (CC) genetic resource, we found that Actc1 varies in expression by up to 24-fold in skeletal muscle. We defined significant expression quantitative trait loci (eQTL) associated with early adult Actc1 expression in soleus and heart. eQTL in both heart and soleus mapped to the Actc1 locus and replicate an eQTL mapped for Actc1 in BXD heart and quadriceps. We built on this previous work by analysing genes within the eQTL peak regions to prioritise likely candidates for modifying Actc1 expression. Additionally we interrogated the CC founder haplotype contributions to enable prioritisation of genetic variants for functional analyses. Methylation around the Actc1 transcriptional start site in early adult skeletal muscle negatively correlated with Actc1 expression in a strain-dependent manner, while other marks of regulatory potential (histone modification and chromatin accessibility) were unaltered. This study provides novel insights into the complex genetic regulation of Actc1 expression in early adult skeletal muscles.


Journal of Structural Biology | 2015

X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction

Julien Ochala; Gianina Ravenscroft; Elyshia McNamara; Kristen J. Nowak; Hiroyuki Iwamoto

In humans, mutant skeletal muscle α-actin proteins are associated with contractile dysfunction, skeletal muscle weakness and a wide range of primarily skeletal muscle diseases. Despite this knowledge, the exact molecular mechanisms triggering the contractile dysfunction remain unknown. Here, we aimed to unravel these. Hence, we used a transgenic mouse model expressing a well-described D286G mutant skeletal muscle α-actin protein and recapitulating the human condition of contractile deregulation and severe skeletal muscle weakness. We then recorded and analyzed the small-angle X-ray diffraction patterns of isolated membrane-permeabilized myofibers. Results showed that upon addition of Ca(2+), the intensity changes of the second (1/19 nm(-1)) and sixth (1/5.9 nm(-1)) actin layer lines and of the first myosin meridional reflection (1/14.3 nm(-1)) were disrupted when the thin-thick filament overlap was optimal (sarcomere length of 2.5-2.6 μm). However these reflections were normal when the thin and thick filaments were not interacting (sarcomere length>3.6 μm). These findings demonstrate, for the first time, that the replacement of just one amino acid in the skeletal muscle α-actin protein partly prevents actin conformational changes during activation, disrupting the strong binding of myosin molecules. This leads to a limited myosin-related tropomyosin movement over the thin filaments, further affecting the amount of cross-bridges, explaining the contractile dysfunction.


Scientific Reports | 2018

L-tyrosine supplementation does not ameliorate skeletal muscle dysfunction in zebrafish and mouse models of dominant skeletal muscle α-actin nemaline myopathy

Adriana Messineo; Charlotte Gineste; Tamar Sztal; Elyshia McNamara; Christophe Vilmen; Augustin C. Ogier; Dorothee Hahne; David Bendahan; Nigel G. Laing; Robert J. Bryson-Richardson; Julien Gondin; Kristen J. Nowak

L-tyrosine supplementation may provide benefit to nemaline myopathy (NM) patients, however previous studies are inconclusive, with no elevation of L-tyrosine levels in blood or tissue reported. We evaluated the ability of L-tyrosine treatments to improve skeletal muscle function in all three published animal models of NM caused by dominant skeletal muscle α-actin (ACTA1) mutations. Highest safe L-tyrosine concentrations were determined for dosing water and feed of wildtype zebrafish and mice respectively. NM TgACTA1D286G-eGFP zebrafish treated with 10 μM L-tyrosine from 24 hours to 6 days post fertilization displayed no improvement in swimming distance. NM TgACTA1D286G mice consuming 2% L-tyrosine supplemented feed from preconception had significant elevations in free L-tyrosine levels in sera (57%) and quadriceps muscle (45%) when examined at 6–7 weeks old. However indicators of skeletal muscle integrity (voluntary exercise, bodyweight, rotarod performance) were not improved. Additionally no benefit on the mechanical properties, energy metabolism, or atrophy of skeletal muscles of 6–7 month old TgACTA1D286G and KIActa1H40Y mice eventuated from consuming a 2% L-tyrosine supplemented diet for 4 weeks. Therefore this study yields important information on aspects of the clinical utility of L-tyrosine for ACTA1 NM.

Collaboration


Dive into the Elyshia McNamara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Boutilier

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Bakker

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

John M. Papadimitriou

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Messer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven B. Marston

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

C. Ottenheijm

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge