Elyssa B. Margolis
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elyssa B. Margolis.
The Journal of Physiology | 2006
Elyssa B. Margolis; Hagar Lock; Gregory O. Hjelmstad; Howard L. Fields
The ventral tegmental area (VTA) and in particular VTA dopamine (DA) neurons are postulated to play a central role in reward, motivation and drug addiction. However, most evidence implicating VTA DA neurons in these functions is based on indirect electrophysiological characterization, rather than cytochemical identification. These physiological criteria were first established in the substantia nigra pars compacta (SNc), but their validity in the VTA is uncertain. In the current study we found that while 88 ± 2% of SNc neurons labelled by the neuronal marker NeuN were co‐labelled for the catecholamine enzyme tyrosine hydroxylase (TH), a much smaller percentage (55 ± 2%) of VTA neurons co‐expressed TH. In addition, using in vitro whole‐cell recordings we found that widely accepted physiological criteria for VTA DA neurons, including the hyperpolarization‐activated inwardly rectifying non‐specific cation current (Ih), spike duration, and inhibition by DA D2 receptor agonists, do not reliably predict the DA content of VTA neurons. We could not distinguish DA neurons from other VTA neurons by size, shape, input resistance, Ih size, or spontaneous firing rate. Although the absence of an Ih reliably predicted that a VTA neuron was non‐dopaminergic, and Ih(−) neurons differ from Ih(+) neurons in firing rate, interspike interval (ISI) standard deviation, and ISI skew, no physiological property examined here is both sensitive and selective for DA neurons in the VTA. We conclude that reliable physiological criteria for VTA DA neuron identification have yet to be determined, and that the criteria currently being used are unreliable.
The Journal of Neuroscience | 2003
Elyssa B. Margolis; Gregory O. Hjelmstad; Antonello Bonci; Howard L. Fields
Dopaminergic neurons of the ventral tegmental area (VTA) play a critical role in motivation and reinforcement of goal-directed behaviors. Furthermore, excitation of these neurons has been implicated in the addictive process initiated by drugs such as morphine that act at the μ-opioid receptor (MOR). In contrast, κ-opioid receptor (KOR) activation in the VTA produces behavioral actions opposite to those elicited by MOR activation. The mechanism underlying this functional opposition, however, is poorly understood. VTA neurons have been categorized previously as principal, secondary, or tertiary on the basis of electrophysiological and pharmacological characteristics. In the present study using whole-cell patch-clamp recordings, we demonstrate that a selective KOR agonist (U69593, 1 μm) directly inhibits a subset of principal and tertiary but not secondary neurons in the VTA. This KOR-mediated inhibition occurs via the activation of a G-protein-coupled inwardly rectifying potassium channel and is blocked by the selective KOR antagonist nor-Binaltorphimine (100 nm). Significantly, regardless of cell class, KOR-mediated inhibition was found only in tyrosine hydroxylase-immunoreactive and thus dopaminergic neurons. In addition, we found a subset of principal neurons that exhibited both disinhibition by a selective MOR agonist ([d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin) (3 μm) and direct inhibition by KOR agonists. These results provide a cellular mechanism for the opposing behavioral effects of KOR and MOR agonists and shed light on how KORs might regulate the motivational effects of both natural rewards and addictive drugs.
The Journal of Neuroscience | 2008
Elyssa B. Margolis; Jennifer M. Mitchell; Junko Ishikawa; Gregory O. Hjelmstad; Howard L. Fields
Broad action potentials (APs) and dopamine (DA) D2 receptor (D2R)-mediated inhibition are widely used to identify midbrain DA neurons. However, when these measures are taken alone they do not predict DA content in ventral tegmental area (VTA) neurons. In fact, some VTA neuronal properties correlate better with projection target than neurotransmitter content. Here we report that amygdala (AMYG)-projecting VTA DA neurons have brief APs and lack D2R agonist (quinpirole; 1 μm) autoinhibition. However, they are hyperpolarized by both the GABAB agonist baclofen (1 μm) and the κ-opioid receptor agonist U69593 [(+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]benzeneacetamide; 1 μm]. Furthermore, we show that accurate prediction of DA content in VTA neurons is possible when the projection target is known: in both nucleus accumbens- and AMYG-projecting neural populations, AP durations are significantly longer in DA than non-DA neurons. Among prefrontal cortex-projecting neurons, quinpirole sensitivity, but not AP duration, is a predictor of DA content. Therefore, in the VTA, AP duration and inhibition by D2R agonists may be valid markers of DA content in neurons of known projection target.
The Journal of Neuroscience | 2011
Yanfang Xia; Joseph R. Driscoll; Linda Wilbrecht; Elyssa B. Margolis; Howard L. Fields; Gregory O. Hjelmstad
The midbrain ventral tegmental area (VTA) projection to the nucleus accumbens (NAc) is implicated in motivation and reinforcement. A significant number of NAc medium spiny neurons (MSNs) project back to the VTA, although the nature of this projection is essentially unknown. For example, do NAc MSNs directly target accumbens-projecting dopamine neurons and do they act via the GABAA or GABAB receptor? To address these issues, we expressed the light-sensitive channel rhodopsin-2 in the rat NAc and made electrophysiological recordings from VTA neurons ex vivo. We found that the NAc directly targets non-dopaminergic VTA neurons, including some that project back to the NAc. These MSN GABAergic terminals are opioid sensitive and act via GABAA receptors.
The Journal of Neuroscience | 2010
Alice Dobi; Elyssa B. Margolis; Hui-Ling Wang; Brandon K. Harvey; Marisela Morales
The ventral tegmental area (VTA) contributes to reward and motivation signaling. In addition to the well established populations of dopamine (DA) or GABA VTA neurons, glutamatergic neurons were recently discovered in the VTA. These glutamatergic neurons express the vesicular glutamate transporter 2, VGluT2. To investigate whether VTA glutamatergic neurons establish local synapses, we tagged axon terminals from resident VTA neurons by intra-VTA injection of Phaseolus vulgaris leucoagglutinin (PHA-L) or an adeno-associated virus encoding wheat germ agglutinin (WGA) and by immunoelectron microscopy determined the presence of VGluT2 in PHA-L- or WGA-positive terminals. We found that PHA-L- or WGA-positive terminals from tagged VTA cells made asymmetric or symmetric synapses within the VTA. VGluT2 immunoreactivity was detected in the vast majority of PHA-L- or WGA-positive terminals forming asymmetric synapses. These results indicate that both VTA glutamatergic and nonglutamatergic (likely GABAergic) neurons establish local synapses. To examine the possible DAergic nature of postsynaptic targets of VTA glutamatergic neurons, we did triple immunolabeling with antibodies against VGluT2, tyrosine hydroxylase (TH), and PHA-L. From triple-labeled tissue, we found that double-labeled PHA-L (+)/VGluT2 (+) axon terminals formed synaptic contacts on dendrites of both TH-positive and TH-negative cells. Consistent with these anatomical observations, in whole-cell slice recordings of VTA neurons we observed that blocking action potential activity significantly decreased the frequency of synaptic glutamatergic events in DAergic and non-DAergic neurons. These observations indicate that resident VTA glutamatergic neurons are likely to affect both DAergic and non-DAergic neurotransmission arising from the VTA.
Nature Reviews Neuroscience | 2017
Marisela Morales; Elyssa B. Margolis
Dopamine-releasing neurons of the ventral tegmental area (VTA) have central roles in reward-related and goal-directed behaviours. VTA dopamine-releasing neurons are heterogeneous in their afferent and efferent connectivity and, in some cases, release GABA or glutamate in addition to dopamine. Recent findings show that motivational signals arising from the VTA can also be carried by non-dopamine-releasing projection neurons, which have their own specific connectivity. Both dopamine-releasing and non-dopamine-releasing VTA neurons integrate afferent signals with local inhibitory or excitatory inputs to generate particular output firing patterns. Various individual inputs, outputs and local connections have been shown to be sufficient to generate reward- or aversion-related behaviour, indicative of the impressive contribution of this small population of neurons to behaviour.
PLOS ONE | 2012
Elyssa B. Margolis; Brian C. Toy; Patricia Himmels; Marisela Morales; Howard L. Fields
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABAB receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.
The Journal of Neuroscience | 2013
Susan F. Volman; Stephan Lammel; Elyssa B. Margolis; Yunbok Kim; Jocelyn M. Richard; Mitchell F. Roitman; Mary Kay Lobo
The mesocorticolimbic system, consisting, at its core, of the ventral tegmental area, the nucleus accumbens, and medial prefrontal cortex, has historically been investigated primarily for its role in positively motivated behaviors and reinforcement learning, and its dysfunction in addiction, schizophrenia, depression, and other mood disorders. Recently, researchers have undertaken a more comprehensive analysis of this system, including its role in not only reward but also punishment, as well as in both positive and negative reinforcement. This focus has been facilitated by new anatomical, physiological, and behavioral approaches to delineate functional circuits underlying behaviors and to determine how this system flexibly encodes and responds to positive and negative states and events, beyond simple associative learning. This review is a summary of topics covered in a mini-symposium at the 2013 Society for Neuroscience annual meeting.
The Journal of Neuroscience | 2014
Amandine Berthet; Elyssa B. Margolis; J Zhang; Ivy Hsieh; Thomas S. Hnasko; J Ahmad; Robert H. Edwards; Hiromi Sesaki; Eric J. Huang; Ken Nakamura
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinsons disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.
Trends in Neurosciences | 2015
Howard L. Fields; Elyssa B. Margolis
Opioids are the most potent analgesics in clinical use; however, their powerful rewarding properties can lead to addiction. The scientific challenge is to retain analgesic potency while limiting the development of tolerance, dependence, and addiction. Both rewarding and analgesic actions of opioids depend upon actions at the mu opioid (MOP) receptor. Systemic opioid reward requires MOP receptor function in the midbrain ventral tegmental area (VTA) which contains dopaminergic neurons. VTA dopaminergic neurons are implicated in various aspects of reward including reward prediction error, working memory, and incentive salience. It is now clear that subsets of VTA neurons have different pharmacological properties and participate in separate circuits. The degree to which MOP receptor agonists act on different VTA circuits depends upon the behavioral state of the animal, which can be altered by manipulations such as food deprivation or prior exposure to MOP receptor agonists.