Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elzbieta Nowak is active.

Publication


Featured researches published by Elzbieta Nowak.


Journal of Biological Chemistry | 2006

The Structural Basis of Signal Transduction for the Response Regulator PrrA from Mycobacterium tuberculosis

Elzbieta Nowak; Santosh Panjikar; Peter V. Konarev; Dmitri I. Svergun; Paul A. Tucker

The structure of the two-domain response regulator PrrA from Mycobacterium tuberculosis shows a compact structure in the crystal with a well defined interdomain interface. The interface, which does not include the interdomain linker, makes the recognition helix and the trans-activation loop of the effector domain inaccessible for interaction with DNA. Part of the interface involves hydrogen-bonding interactions of a tyrosine residue in the receiver domain that is believed to be involved in signal transduction, which, if disrupted, would destabilize the interdomain interface, allowing a more extended conformation of the molecule, which would in turn allow access to the recognition helix. In solution, there is evidence for an equilibrium between compact and extended forms of the protein that is far toward the compact form when the protein is inactivated but moves toward a more extended form when activated by the cognate sensor kinase PrrB.


Nature Structural & Molecular Biology | 2011

Structure of UvrA nucleotide excision repair protein in complex with modified DNA.

Marcin Jaciuk; Elzbieta Nowak; Krzysztof Skowronek; Anna Tańska; Marcin Nowotny

One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion.


Nucleic Acids Research | 2014

Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding

Michał Miętus; Elzbieta Nowak; Marcin Jaciuk; Paweł Kustosz; Justyna Studnicka; Marcin Nowotny

Rad2/XPG belongs to the flap nuclease family and is responsible for a key step of the eukaryotic nucleotide excision DNA repair (NER) pathway. To elucidate the mechanism of DNA binding by Rad2/XPG, we solved crystal structures of the catalytic core of Rad2 in complex with a substrate. Rad2 utilizes three structural modules for recognition of the double-stranded portion of DNA substrate, particularly a Rad2-specific α-helix for binding the cleaved strand. The protein does not specifically recognize the single-stranded portion of the nucleic acid. Our data suggest that in contrast to related enzymes (FEN1 and EXO1), the Rad2 active site may be more accessible, which would create an exit route for substrates without a free 5′ end.


Nature Structural & Molecular Biology | 2014

Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry

Elzbieta Nowak; Jennifer T. Miller; Marion K. Bona; Justyna Studnicka; Roman H. Szczepanowski; Jakub Jurkowski; Stuart F. J. Le Grice; Marcin Nowotny

Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)–containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract–containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer.


Methods in Enzymology | 2007

Two-component systems of Mycobacterium tuberculosis: structure-based approaches.

Paul A. Tucker; Elzbieta Nowak; Jens Preben Morth

Mycobacterium tuberculosis contains few two-component systems compared to many other bacteria, possibly because it has more serine/threonine signaling pathways. Even so, these two-component systems appear to play an important role in early intracellular survival of the pathogen as well as in aspects of virulence. In this chapter, we discuss what has been learned about the mycobacterial two-component systems, with particular emphasis on knowledge gained from structural genomics projects.


BMC Microbiology | 2015

Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231

Paula Roszczenko; Magdalena J. Grzeszczuk; Patrycja Kobierecka; Ewa Wywial; Paweł Urbanowicz; Piotr Wincek; Elzbieta Nowak; E. Katarzyna Jagusztyn-Krynicka

BackgroundIn the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE.ResultsThe present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori.ConclusionsThe present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.


Frontiers in Microbiology | 2015

Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain

Katarzyna M. Bocian-Ostrzycka; Anna M. Łasica; Stanislaw Dunin-Horkawicz; Magdalena J. Grzeszczuk; Karolina Drabik; Aneta M. Dobosz; Renata Godlewska; Elzbieta Nowak; Jean-François Collet; Elżbieta K. Jagusztyn-Krynicka

Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.


Nature Communications | 2018

Structural analysis of mtEXO mitochondrial RNA degradosome reveals tight coupling of nuclease and helicase components

Michal Razew; Zbigniew Warkocki; Michał Taube; Adam Kolondra; Mariusz Czarnocki-Cieciura; Elzbieta Nowak; Karolina Labedzka-Dmoch; Aleksandra Kawinska; Jakub Piatkowski; Pawel Golik; Maciej Kozak; Andrzej Dziembowski; Marcin Nowotny

Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase–exoribonuclease coordination. mtEXO is composed of Dss1 3′-to-5′ exoribonuclease and Suv3 helicase. It is the master regulator of mitochondrial gene expression in yeast. Here, we present the structure of mtEXO and a description of its mechanism of action. The crystal structure of Dss1 reveals domains that are responsible for interactions with Suv3. Importantly, these interactions are compatible with the conformational changes of Suv3 domains during the helicase cycle. We demonstrate that mtEXO is an intimate complex which forms an RNA-binding channel spanning its entire structure, with Suv3 helicase feeding the 3′ end of the RNA toward the active site of Dss1.The mitochondrial RNA degradosome (mtEXO) plays an essential role in the regulation of mitochondrial gene expression and is composed of the 3′-to-5′ exoribonuclease Dss1 and the helicase Suv3. Here the authors present the RNA bound mtEXO crystal structure and give insights into its mechanism.


Nucleic Acids Research | 2017

The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain

Cyril Charbonnel; Adnan Khan Niazi; Emilie Elvira-Matelot; Elzbieta Nowak; Matthias Zytnicki; Anne de Bures; Edouard Jobet; Alisson Opsomer; Nahid Shamandi; Marcin Nowotny; Christine Carapito; Jean-Philippe Reichheld; Hervé Vaucheret; Julio Sáez-Vásquez

Abstract RNase III enzymes cleave double stranded (ds)RNA. This is an essential step for regulating the processing of mRNA, rRNA, snoRNA and other small RNAs, including siRNA and miRNA. Arabidopsis thaliana encodes nine RNase III: four DICER-LIKE (DCL) and five RNASE THREE LIKE (RTL). To better understand the molecular functions of RNase III in plants we developed a biochemical assay using RTL1 as a model. We show that RTL1 does not degrade dsRNA randomly, but recognizes specific duplex sequences to direct accurate cleavage. Furthermore, we demonstrate that RNase III and dsRNA binding domains (dsRBD) are both required for dsRNA cleavage. Interestingly, the four DCL and the three RTL that carry dsRBD share a conserved cysteine (C230 in Arabidopsis RTL1) in their dsRBD. C230 is essential for RTL1 and DCL1 activities and is subjected to post-transcriptional modification. Indeed, under oxidizing conditions, glutathionylation of C230 inhibits RTL1 cleavage activity in a reversible manner involving glutaredoxins. We conclude that the redox state of the dsRBD ensures a fine-tune regulation of dsRNA processing by plant RNase III.


Nucleic Acids Research | 2017

mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation

Anna M. Rydzik; Marcin Warminski; Pawel J. Sikorski; Marek R. Baranowski; Sylwia Walczak; Joanna Kowalska; Joanna Zuberek; Maciej Lukaszewicz; Elzbieta Nowak; Timothy D. W. Claridge; Edward Darzynkiewicz; Marcin Nowotny; Jacek Jemielity

Abstract Analogues of the mRNA 5′-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.

Collaboration


Dive into the Elzbieta Nowak's collaboration.

Top Co-Authors

Avatar

Dmitri I. Svergun

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Stuart F. J. Le Grice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul A. Tucker

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer T. Miller

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Marion K. Bona

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge