Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elżbieta Pajtasz-Piasecka is active.

Publication


Featured researches published by Elżbieta Pajtasz-Piasecka.


PLOS ONE | 2013

T4 Phage and Its Head Surface Proteins Do Not Stimulate Inflammatory Mediator Production

Paulina Miernikiewicz; Krystyna Dąbrowska; Agnieszka Piotrowicz; Barbara Owczarek; Justyna Wojas-Turek; Jagoda Kicielińska; Joanna Rossowska; Elżbieta Pajtasz-Piasecka; Katarzyna Hodyra; Katarzyna Macegoniuk; Kamila Rzewucka; Agnieszka Kopciuch; Tomasz Majka; Andrey V. Letarov; Eugene Kulikov; Henryk Maciejewski; Andrzej Górski

Viruses are potent activators of the signal pathways leading to increased cytokine or ROS production. The effects exerted on the immune system are usually mediated by viral proteins. Complementary to the progress in phage therapy practice, advancement of knowledge about the influence of bacteriophages on mammalian immunity is necessary. Particularly, the potential ability of phage proteins to act like other viral stimulators of the immune system may have strong practical implications for the safety and efficacy of bacteriophage therapy. Here we present studies on the effect of T4 phage and its head proteins on production of inflammatory mediators and inflammation-related factors: IL-1α, IL-1β, IL-2, IL-6, IL-10, IL-12 p40/p70, IFN-γ, TNF-α, MCP-1, MIG, RANTES, GCSF, GM-CSF and reactive oxygen species (ROS). Plasma cytokine profiles in an in vivo mouse model and in human blood cells treated with gp23*, gp24*, Hoc and Soc were evaluated by cytokine antibody arrays. Cytokine production and expression of CD40, CD80, CD86 and MHC class II molecules were also investigated in mouse bone marrow-derived dendritic cells treated with whole T4 phage particle or the same capsid proteins. The influence of T4 and gp23*, gp24*, Hoc and Soc on reactive oxygen species generation was examined in blood cells using luminol-dependent chemiluminescence assay. In all performed assays, the T4 bacteriophage and its capsid proteins gp23*, gp24*, Hoc and Soc did not affect production of inflammatory-related cytokines or ROS. These observations are of importance for any medical or veterinary application of bacteriophages.


Journal of Leukocyte Biology | 2014

DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment

Romana Mikyšková; Marie Indrová; Veronika Vlková; Jana Bieblová; Símová J; Zuzana Paračková; Elżbieta Pajtasz-Piasecka; Joanna Rossowska; Milan Reiniš

MDSCs represent one of the key players mediating immunosuppression. These cells accumulate in the TME, lymphoid organs, and blood during tumor growth. Their mobilization was also reported after CY therapy. DNMTi 5AC has been intensively studied as an antitumor agent. In this study, we examined, using two different murine tumor models, the modulatory effects of 5AC on TU‐MDSCs and CY‐MDSCs tumor growth and CY therapy. Indeed, the percentage of MDSCs in the TME and spleens of 5AC‐treated mice bearing TRAMP‐C2 or TC‐1/A9 tumors was found decreased. The changes in the MDSC percentage were accompanied by a decrease in the Arg‐1 gene expression, both in the TME and spleens. CY treatment of the tumors resulted in additional MDSC accumulation in the TME and spleens. This accumulation was subsequently inhibited by 5AC treatment. A combination of CY with 5AC led to the highest tumor growth inhibition. Furthermore, in vitro cultivation of spleen MDSCs in the presence of 5AC reduced the percentage of MDSCs. This reduction was associated with an increased percentage of CD11c+ and CD86+/MHCII+ cells. The observed modulatory effect on MDSCs correlated with a reduction of the Arg‐1 gene expression, VEGF production, and loss of suppressive capacity. Similar, albeit weaker effects were observed when MDSCs from the spleens of tumor‐bearing animals were cultivated with 5AC. Our findings indicate that beside the direct antitumor effect, 5AC can reduce the percentage of MDSCs accumulating in the TME and spleens during tumor growth and CY chemotherapy, which can be beneficial for the outcome of cancer therapy.


Immunotherapy | 2010

Dendritic cell-based vaccines for the therapy of experimental tumors

Elżbieta Pajtasz-Piasecka; Marie Indrová

Dendritic cells (DCs) are believed to be the most potent antigen-presenting cells able to link the innate and adaptive immune systems. Many studies have focused on different immunotherapeutic approaches to applying DCs as tools to improve anticancer therapy. Although a number of investigations suggesting the benefit of DC-based vaccination during anticancer therapy have been reported, the general knowledge regarding the ultimate methods of DC-vaccine preparation is still unsatisfactory. In this article, the perspectives of DC-based anti-tumor immunotherapy and optimizing strategies of DC vaccination in humans in light of results obtained in mouse models are discussed.


BioMed Research International | 2014

Freeze-Drying of Plant Tissue Containing HBV Surface Antigen for the Oral Vaccine against Hepatitis B

Marcin Czyż; Radosław Dembczyński; Roman Marecik; Justyna Wojas-Turek; Magdalena Milczarek; Elżbieta Pajtasz-Piasecka; Joanna Wietrzyk; Tomasz Pniewski

The aim of this study was to develop a freeze-drying protocol facilitating successful processing of plant material containing the small surface antigen of hepatitis B virus (S-HBsAg) while preserving its VLP structure and immunogenicity. Freeze-drying of the antigen in lettuce leaf tissue, without any isolation or purification step, was investigated. Each process step was consecutively evaluated and the best parameters were applied. Several drying profiles and excipients were tested. The profile of 20°C for 20 h for primary and 22°C for 2 h for secondary drying as well as sucrose expressed efficient stabilisation of S-HBsAg during freeze-drying. Freezing rate and postprocess residual moisture were also analysed as important factors affecting S-HBsAg preservation. The process was reproducible and provided a product with VLP content up to 200 µg/g DW. Assays for VLPs and total antigen together with animal immunisation trials confirmed preservation of antigenicity and immunogenicity of S-HBsAg in freeze-dried powder. Long-term stability tests revealed that the stored freeze-dried product was stable at 4°C for one year, but degraded at elevated temperatures. As a result, a basis for an efficient freeze-drying process has been established and a suitable semiproduct for oral plant-derived vaccine against HBV was obtained.


Immunobiology | 2015

Temporary elimination of IL-10 enhanced the effectiveness of cyclophosphamide and BMDC-based therapy by decrease of the suppressor activity of MDSCs and activation of antitumour immune response.

Joanna Rossowska; Natalia Anger; Jagoda Kicielińska; Elżbieta Pajtasz-Piasecka; Aleksandra Bielawska-Pohl; Justyna Wojas-Turek; Danuta Duś

The antitumour activity of the dendritic cell (DC)-based cellular vaccines is greatly reduced in hostile tumour microenvironment. Therefore, there are many attempts to eliminate or neutralize both suppressor cells and cytokines. The aim of the investigation was to verify if temporary elimination of IL-10 just before injection of bone marrow-derived DCs (BMDCs) enhance the antitumour activity of applied vaccines and help to overcome the immunosuppressive tumour barrier. Mice bearing colon carcinoma MC38 were given single dose of cyclophosphamide (CY) followed by alternate injections of anti-IL-10 antibodies and BMDC-based vaccines consisted of BMDCs stimulated with MC38 tumour antigen (BMDC/TAg) or the combination of BMDC/TAg with BMDCs transduced with IL-12 genes (BMDC/IL-12). The high tumour growth inhibition was observed in mice treated with CY+anti-IL-10+BMDC/TAg as well as CY±anti-IL-10+BMDC/TAg+BMDC/IL-12. However, the mechanisms of action of particular treatment schemes were diversified. Generally, it was observed that application of anti-IL-10 Abs reduced suppressor activity of myeloid-derived suppressor cells (MDSCs). However, anti-IL-10 Abs in combination with diversely composed BMDC-based vaccines induced different components of an antitumour response. The high cytotoxic activity of spleen-derived NK cells and increased influx of these cells into tumours of mice treated with CY+anti-IL-10+BMDC/TAg indicate that mice from the group developed strong NK-dependent response. Whereas, application of anti-IL-10 Abs just before injection of BMDC/TAg+BMDC/IL-12 did not enhanced NK cell activity. Furthermore, it significantly impaired effectiveness of therapy composed of CY+BMDC/TAg+BMDC/IL-12 vaccine in induction of Th1 type immune response. Taken together, our results indicate that temporary elimination of IL-10 is an important and effective way to decrease the immune suppression associated with MDSCs activity and represents a useful strategy for successful enhancement of the antitumour activity of BMDC/TAg-based vaccines.


Journal of Immunotherapy | 2014

Cyclophosphamide and IL-12-transduced DCs enhance the antitumor activity of tumor antigen-stimulated DCs and reduce Tregs and MDSCs number.

Joanna Rossowska; Elżbieta Pajtasz-Piasecka; Natalia Anger; Justyna Wojas-Turek; Jagoda Kicielińska; Egbert Piasecki; Danuta Duś

A hostile tumor microenvironment, characterized by an abundance of T regulatory cells and myeloid-derived suppressor cells (MDSCs), considerably limits the efficacy of dendritic cell (DC)-based vaccines. The intention of this study was to enhance the antitumor activity of vaccines consisting of bone marrow-derived DCs stimulated with TAg (BMDC/TAg) via single administration of cyclophosphamide and multiple injections of interleukin (IL)-12-transduced DCs (BMDC/IL-12). The combined chemoimmunotherapy was applied in the treatment of mice with subcutaneously (SC) growing, advanced MC38 colon carcinoma. The highest level of tumor growth inhibition, accompanied by high cytotoxic activity of effector cells, and their increased influx into tumor tissue, was observed after application of cyclophosphamide in combination with BMDC/TAg and BMDC/IL-12. The effect was probably associated with the elimination of T regulatory cells from spleens and tumors, but most of all with changes in the number and differentiation stage of MDSCs. After the therapy, the percentage of granulocytic and monocytic MDSCs in spleens was significantly lower than in the control group. Moreover, MDSCs derived from spleens and tumors showed increased expression of MHC class II, which may indicate the higher maturation stage of the myeloid cells as well as their enhanced capacity toward antigen presentation. The obtained data indicate that the optimal composition of antitumor vaccines able to limit the suppressor activity of MDSCs is essential to enhance the elimination of tumor cells and to achieve an optimal therapeutic effect.


Medical Oncology | 1999

Synergistic antitumour effects of chemo-immunotherapy with an oxazaphosphorine drug and IL-2-secreting cells in a mouse colon cancer model

Halina Kusnierczyk; Elżbieta Pajtasz-Piasecka; Czesław Radzikowski

The therapeutic efficacies of two chemical agents—cyclophosphamide (CY) and compound CBM-11—were compared in a chemo-immunotherapy protocol combining a single injection of a cytotoxic agent with a series of weekly peritumoural (p.t.) administrations of nontumourigenic plasmocytoma cells engineered to produce interleukin-2 (IL-2). Compound CBM-11, an optically active S(−) isomeric form of a bromine-substituted analogue of ifosfamide, is currently used in Phase I clinical trials in Poland. The treatment was applied to mice bearing well-established subcutaneous (s.c.) MC-38 colon tumours. Single intraperitoneal injection of 200 mg/kg of CY or of an equitoxic dose of 140 mg/kg of CBM-11 alone resulted in a tumour growth delay (TGD) of 10–13 and 17–21 d, respectively. This effect was accompanied by an increase in life-span (ILS) of at most 42 and 62% over control. Complete responses (CR) were not observed. Combination of CY or CBM-11 with 6–7 p.t. injections of IL-2-secreting cells resulted in potentiation of the therapeutic effects: TGD and ILS values were considerably increased and long-lasting CRs were observed. The overall incidence of CR after combined treatment was ca 16% and 42% for CY and CBM-11, respectively (P=0.049). A specific anti-MC-38 immunity was induced by the treatment, as verified by rechallenge of cured mice with MC-38 tumour cells 3–4 months post therapy cessation. Our results indicate that tumour destruction by chemotherapy (even if not complete) and prolonged local delivery of IL-2 secreted by allogeneic cells of an easy to culture line are sufficient to secure long-lasting specific antitumour immunity in cured mice.


Folia Histochemica Et Cytobiologica | 2012

Antitumor effect of murine dendritic and tumor cells transduced with IL-2 gene

Justyna Wojas-Turek; Elżbieta Pajtasz-Piasecka; Joanna Rossowska; Egbert Piasecki; Danuta Duś

Interleukin (IL-) 2 acts on a number of types of immune cells promoting their effector functions. To replace systemic administration of recombinant form of this cytokine, various genetically modified cells have been used in different preclinical models for tumor growth inhibition. In this study, dendritic or tumor cells transduced with retroviral vector carrying IL-2 gene (JAWS II/IL-2, X63/IL-2, MC38/IL-2 cells) alone or combined with tumor antigenstimulated dendritic cells (JAWS II/TAg) were exploited to treat colon carcinoma MC38-bearing mice. After the peritumoral injection of vaccine cells, the tumor growth delay and the increase in the number of tumor infiltrating CD4+ and CD8+ T lymphocytes were noted. A considerable increase in CD4+ cell influx into tumor tissue was observed when JAWS II/IL-2 cells or JAWS II/TAg with syngeneic MC38/IL-2 cells were applied. The increase in intensity of CD8+ cell infiltration was associated with immune reaction triggered by the same combination of applied cells or JAWS II/TAg with allogeneic X63/IL-2 cells. The effect observed in vivo was accompanied by MC38/0 cell specific cytotoxic activity of spleen cells in vitro. Thus, the application of vaccines, including IL-2-secreting cells of various origins, was able to induce different antitumor responses polarized by exogenous IL-2 and the encountered tumor antigen.


Frontiers in Immunology | 2017

Intratumoral Lentivector-Mediated TGF-β1 Gene Downregulation As a Potent Strategy for Enhancing the Antitumor Effect of Therapy Composed of Cyclophosphamide and Dendritic Cells

Joanna Rossowska; Natalia Anger; Agnieszka Szczygieł; Jagoda Mierzejewska; Elżbieta Pajtasz-Piasecka

Vaccination with dendritic cells (DCs) stimulated with tumor antigens can induce specific cellular immune response that recognizes a high spectrum of tumor antigens. However, the ability of cancer cells to produce immunosuppressive factors drastically decreases the antitumor activity of DCs. The main purpose of the study was to improve the effectiveness of DC-based immunotherapy or chemoimmunotherapy composed of cyclophosphamide (CY) and DCs by application of lentivectors (LVs)-encoding short hairpin RNA specific for TGF-β1 (shTGFβ1 LVs). We observed that s.c. inoculation of both MC38 cells with silenced expression of TGF-β1 (MC38/shTGF-β1) and direct intratumoral application of shTGFβ1 LVs contributed to reduction of suppressor activity of myeloid cells and Tregs in tumor. Contrary to expectations, in mice bearing wild tumor, the application of shTGFβ1 LVs prior to vaccination with bone marrow-derived DC stimulated with tumor antigens (BMDC/TAg) did not influence myeloid-derived suppressor cell (MDSC) infiltration into tumor. As a result, we observed only minor MC38 tumor growth inhibition (TGI) accompanied by systemic antitumor response activation comparable to that obtained for negative control (shN). However, when the proposed scheme was complemented by pretreatment with a low dose of CY, we noticed high MC38 TGI together with decreased number of MDSCs in tumor and induction of Th1-type response. Moreover, in both schemes of treatment, LVs (shTGFβ1 as well as shN) induced high influx of CTLs into tumor associated probably with the viral antigen introduction into tumor microenvironment. Concluding, the application of shTGFβ1 LVs alone or in combination with DC-based vaccines is not sufficient for long-lasting elimination of suppression in tumor. However, simultaneous reduction of TGF-β1 in tumor microenvironment and its remodeling by pretreatment with a low dose of CY facilitates the settlement of peritumorally inoculated DCs and supports them in restoration and activation of a potent antitumor response.


Scientific Reports | 2016

Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease

Sabina Górska; Corine Sandstrőm; Justyna Wojas-Turek; Joanna Rossowska; Elżbieta Pajtasz-Piasecka; Ewa Brzozowska; Andrzej Gamian

Characteristic changes in the microbiota biostructure and a decreased tolerance to intestinal bacteria have been associated with inflammatory bowel disease (IBD). However, few studies have examined the constituents of the intestinal microbiota, including the surface molecules of the bacteria, in healthy and IBD subsets. Here, we compare the chemical structures and immunomodulatory properties of the exopolysaccharides (EPS) of lactobacilli isolated from mice with induced IBD (IBD “+”) versus those of healthy mice (IBD “−”). Classical structural analyses were performed using nuclear magnetic resonance spectroscopy and mass spectrometry. Immunomodulatory properties were assessed by stimulation of dendritic cells derived from mouse bone marrow or human peripheral mononuclear blood cells. Our results revealed that EPS produced by IBD “+” species are structurally different from those isolated from IBD “−”. Moreover, the structurally different EPS generate different immune responses by dendritic cells. We speculate that resident strains could, upon gut inflammation, switch to producing EPS with specific motifs that are absent from lactobacilli IBD “−”, and/or that bacteria with a particular EPS structure might inhabit the inflamed intestinal mucosa. This study may shed light on the role of EPS in IBD and help the development of a specific probiotic therapy for this disease.

Collaboration


Dive into the Elżbieta Pajtasz-Piasecka's collaboration.

Top Co-Authors

Avatar

Joanna Rossowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Danuta Duś

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Indrová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia Anger

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jana Bieblová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Anna Szyda

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge