Elżbieta Romanowska
University of Warsaw
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elżbieta Romanowska.
Acta Physiologiae Plantarum | 1998
Eugeniusz Parys; Elżbieta Romanowska; Maria Siedlecka; Jerzy W. Poskuta
Photosynthesis and transpiration rate of detached leaves of pea (Pisum sativum L. cv. Iłowiecki) exposed to solution of Pb(NO3)2 at 1 or 5 mmol·dm−3 concentrations were inhibited. The higher concentration of this toxicant decreased photosynthesis and transpiration rates 2 and 3 times respectively, and increased respiration by about 20 %, as measured after 24 hours of treatment. Similarly to Pb(NO3)2, glyceraldehyde solution, an inhibitor of phosphoribulokinase, at 50 mmol·dm−3 concentration decreased the rates of photosynthesis and transpiration during introduction into pea leaves. The rate of dark respiration, however, remained unchanged during 2 hours of experiment.The potential photochemical efficiency of PS II (Fv/Fm) and the activity of Rubisco (EC 4.1.1.39) at 5 mmol·dm−3 of Pb(NO3)2 were lowered by 10 % and 20 % respectively, after 24 hours. Neither changes in the activity of PEPC (EC 4.1.1.31) or protein and pigment contents were noted in Pb-treated leaves. The photosynthetic activity of protoplasts isolated from leaves treated for 24 or 48 hours with Pb(NO3)2 at 5 mmol·dm−3 concentration was decreased 10 % or 25 %, whereas, the rate of dark respiration was stimulated by about 40 % and 75 %, respectively. The content of abscisic acid, a hormone responsible for stomatal closure, in detached pea leaves treated for 24 h with 5 mmol·dm−3 of Pb(NO3)2 solution was increased by about 3 times; a longer (48h) treatment led to further increase (by about 7 times) in the amount of this hormone. The results of our experiments provide evidences that CO2 fixation in detached pea leaves, at least up to 24 hours of Pb(NO3)2 treatment, was restricted mainly by stomatal closure.
Journal of Plant Physiology | 2001
Abir U. Igamberdiev; Elżbieta Romanowska; Per Gardeström
The contribution of mitochondrial oxidation of photorespiratory and respiratory substrates to subcellular energy and redox balance was investigated in leaf protoplasts of barley (Hordeum vulgare L. ...
Biochimica et Biophysica Acta | 2009
Berenika Pokorska; Maksymilian Zienkiewicz; Marta Powikrowska; Anna Drożak; Elżbieta Romanowska
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.
Journal of Biological Chemistry | 2008
Elżbieta Romanowska; Joanna Kargul; Marta Powikrowska; Giovanni Finazzi; Jon Nield; Anna Drożak; Berenika Pokorska
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C4 plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII)·PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI·PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b6f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C4 plant is clearly distinct from that of the stroma lamellae of the C3 plants. In particular, supramolecular organization of the dimeric LHCII·PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO2 fixation in BS cells, and hence, may optimize ATP production within this compartment.
Planta | 2012
Maksymilian Zienkiewicz; Aleksandra Ferenc; Wioleta Wasilewska; Elżbieta Romanowska
The chloroplast Deg1 protein performs proteolytic cleavage of the photodamaged D1 protein of the photosystem II (PSII) reaction center, PSII extrinsic subunit PsbO and the soluble electron carrier plastocyanin. Using biochemical, immunological and mass spectrometry approaches we showed that the heterogeneously expressed Deg1 protease from Arabidopsis thaliana can be responsible for the degradation of the monomeric light-harvesting complex antenna subunits of PSII (LHCII), CP26 and CP29, as well as PSII-associated PsbS (CP22/NPQ4) protein. The results may indicate that cytochrome b6 protein and two previously unknown thylakoid proteins, Ptac16 and an 18.3-kDa protein, may be the substrates for Deg1. The interaction of Deg1 with the PsbS protein and the minor LHCII subunits implies its involvement in the regulation of both excess energy dissipation and state transition adaptation processes.
Journal of Plant Physiology | 2012
Elżbieta Romanowska; Wioleta Wasilewska; Rikard Fristedt; Alexander V. Vener; Maksymilian Zienkiewicz
Lead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream. The photochemical efficiency of PSII, measured as an Fv/Fm ratio, in the maize leaves treated with Pb was only 10% lower than in control leaves. The PSII activity was not affected by Pb ions in mesophyll thylakoids, whereas in bundle sheath it was reduced. Protein phosphorylation in mesophyll and bundle sheath thylakoids was analyzed using mass spectrometry and protein blotting before and after lead treatment. Both methods clearly demonstrated increase in phosphorylation of the PSII proteins upon treatment with Pb(2+), however, the extent of D1, D2 and CP43 phosphorylation in the mesophyll chloroplasts was clearly higher than in bundle sheath cells. We found that in the presence of Pb ions there was no detectable dephosphorylation of the strongly phosphorylated D1 and PsbH proteins of PSII complex in darkness or under far red light. These results suggest that Pb(2+) stimulates phosphorylation of PSII core proteins, which can affect stability of the PSII complexes and the rate of D1 protein degradation. Increased phosphorylation of the PSII core proteins induced by Pb ions may be a crucial protection mechanism stabilizing optimal composition of the PSII complexes under metal stress conditions. Our results show that acclimation to Pb ions was achieved in both types of maize chloroplasts in the same way. However, these processes are obviously more complex because of different metabolic status in mesophyll and bundle sheath chloroplasts.
Archive | 2002
Elżbieta Romanowska
The heavy metals such as e.g. Pb2+, Cd2+, Ni2+, Cu2+, Fe2+, Hg2+, Zn2+, Al2+, Co2+are released into the environment by various industrials processes. These contaminants present at an elevated level in the environment, may be taken up by the plants via the root system and/or by foliar absorption and accumulated in different parts of plants, thereby inducing reduced growth (Ernst, 1980; Foy et al., 1978). Plants growing in soils rich in toxic metals are often incapable of taking up water since their roots are short, extending only on the surface, and therefore in no position to take advantage of the underlying water. Plants usually show a higher tolerance to heavy metals than mammals and this fact is responsible for the entry of the metal into the food chain (Baker et al., 1979; Foy et al., 1978).
Journal of Plant Physiology | 2013
K. Gawronska; Elżbieta Romanowska; Zbigniew Miszalski; Ewa Niewiadomska
In the halophytic plant Mesembryanthemum crystallinum salinity or drought can change the mode of photosynthesis from C(3) to crassulacean acid metabolism (CAM). These two stress factors are linked to oxidative stress, however, the induction of CAM by oxidative stress per se is not straightforward. Treatment with high light (HL) did not lead to the induction of CAM, as documented by a low night/day difference in malate level and a low expression of the CAM-related form of phosphoenolcarboxylase (Ppc1), despite causing some oxidative damage (elevated MDA level, malondialdehyde). In contrast to the action of high salinity (0.4M NaCl), HL treatment did not activate neither the cytosolic NADP-malic enzyme nor the chloroplastic form of NADP-dependent malate dehydrogenase (NADP-MDH). In plastids of HL-treated plants a huge amount of starch was accumulated. This was associated with a weak stimulation of hydrolytic and phosphorolytic starch-degrading enzymes, in contrast to their strong up-regulation under high salinity. It is concluded that HL alone is not able to activate starch degradation necessary for CAM performance. Moreover, in the absence of salinity in C(3)M. crystallinum plants an age-dependent increase in energy dissipation from PSII was documented under high irradiance, as illustrated by non-photochemical quenching (NPQ). Obtained data suggest that in this halophytic species several photoprotective strategies are strictly salinity-dependent.
Biologia Plantarum | 2008
Elżbieta Romanowska; B. Wróblewska; Anna Drożak; Maksymilian Zienkiewicz; Maria Siedlecka
The role of irradiance on the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) was examined in the leaves of Pisum sativum L. plants grown under low (LL) or high (HL) irradiance (PPFD 50 or 600 µmol m−2 s−1) and exposed after detachment to 5 mM Pb (NO3)2 for 24 h. The activities of both enzymes increased in response to LL compared with HL and no effect of Pb ions was observed. Photosystem (PS) 1 and PS 2 activities were also investigated in chloroplasts isolated from these leaves. LL lowered PS 1 electron transport rate and changes in photochemical activity of PS 1 induced by Pb2+ were visible only in the chloroplasts isolated from leaves of LL grown plants. PS 2 activity was influenced similarly by Pb ions at both PPFD. This study demonstrates that leaves of HL grown plants were less sensitive to lead toxicity than those from LL grown plants. Changes in electron transport rates were the main factors responsible for the generation of reactive oxygen species in the chloroplasts and as a consequence, in induction of antioxidant enzymes.
Proteomics | 2012
Rikard Fristedt; Wioleta Wasilewska; Elżbieta Romanowska; Alexander V. Vener
In C4 plants, such as maize, the photosynthetic apparatus is partitioned over two cell types called mesophyll (M) and bundle sheath (BS), which have different structure and specialization of the photosynthetic thylakoid membranes. We characterized protein phosphorylation in thylakoids of the two cell types from maize grown under either low or high light. Western blotting with phosphothreonine antibodies and ProQ phosphostaining detected light‐dependent changes in the protein phosphorylation patterns. LC‐MS/MS with alternating CID and electron transfer dissociation sequencing of peptide ions mapped 15 protein phosphorylation sites. Phosphorylated D2, CP29, CP26, Lhcb2 proteins, and ATPsynthase were found only in M membranes. A previously unknown phosphorylation site was mapped in phosphoenolpyruvate carboxykinase from the BS cells. Phosphorylation stoichiometry was calculated from the ratios of normalized ion currents for phosphorylated to nonphosphorylated peptide pairs from the D1, D2, CP43, and PbsH proteins of photosystem II (PSII). Every PSII in M thylakoids contained on average 1.5 ± 0.1 or 2.3 ± 0.2 phosphoryl groups in plants grown under either low or high light, while in BS membranes the corresponding numbers were 0.25 ± 0.1 or 0.7 ± 0.2, respectively. It is suggested that the phosphorylation level, as well as turnover of PSII depend on the structure of thylakoids.