Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emad M. Grais is active.

Publication


Featured researches published by Emad M. Grais.


international conference on digital signal processing | 2011

Single channel speech music separation using nonnegative matrix factorization and spectral masks

Emad M. Grais; Hakan Erdogan

A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with spectral masks is proposed in this work. The proposed algorithm uses training data of speech and music signals with nonnegative matrix factorization followed by masking to separate the mixed signal. In the training stage, NMF uses the training data to train a set of basis vectors for each source. These bases are trained using NMF in the magnitude spectrum domain. After observing the mixed signal, NMF is used to decompose its magnitude spectra into a linear combination of the trained bases for both sources. The decomposition results are used to build a mask, which explains the contribution of each source in the mixed signal. Experimental results show that using masks after NMF improves the separation process even when calculating NMF with fewer iterations, which yields a faster separation process.


international conference on acoustics, speech, and signal processing | 2014

Deep neural networks for single channel source separation

Emad M. Grais; Mehmet Umut Sen; Hakan Erdogan

In this paper, a novel approach for single channel source separation (SCSS) using a deep neural network (DNN) architecture is introduced. Unlike previous studies in which DNN and other classifiers were used for classifying time-frequency bins to obtain hard masks for each source, we use the DNN to classify estimated source spectra to check for their validity during separation. In the training stage, the training data for the source signals are used to train a DNN. In the separation stage, the trained DNN is utilized to aid in estimation of each source in the mixed signal. Single channel source separation problem is formulated as an energy minimization problem where each source spectra estimate is encouraged to fit the trained DNN model and the mixed signal spectrum is encouraged to be written as a weighted sum of the estimated source spectra. The proposed approach works regardless of the energy scale differences between the source signals in the training and separation stages. Nonnegative matrix factorization (NMF) is used to initialize the DNN estimate for each source. The experimental results show that using DNN initialized by NMF for source separation improves the quality of the separated signal compared with using NMF for source separation.


Computer Speech & Language | 2013

Regularized nonnegative matrix factorization using Gaussian mixture priors for supervised single channel source separation

Emad M. Grais; Hakan Erdogan

We introduce a new regularized nonnegative matrix factorization (NMF) method for supervised single-channel source separation (SCSS). We propose a new multi-objective cost function which includes the conventional divergence term for the NMF together with a prior likelihood term. The first term measures the divergence between the observed data and the multiplication of basis and gains matrices. The novel second term encourages the log-normalized gain vectors of the NMF solution to increase their likelihood under a prior Gaussian mixture model (GMM) which is used to encourage the gains to follow certain patterns. In this model, the parameters to be estimated are the basis vectors, the gain vectors and the parameters of the GMM prior. We introduce two different ways to train the model parameters, sequential training and joint training. In sequential training, after finding the basis and gains matrices, the gains matrix is then used to train the prior GMM in a separate step. In joint training, within each NMF iteration the basis matrix, the gains matrix and the prior GMM parameters are updated jointly using the proposed regularized NMF. The normalization of the gains makes the prior models energy independent, which is an advantage as compared to earlier proposals. In addition, GMM is a much richer prior than the previously considered alternatives such as conjugate priors which may not represent the distribution of the gains in the best possible way. In the separation stage after observing the mixed signal, we use the proposed regularized cost function with a combined basis and the GMM priors for all sources that were learned from training data for each source. Only the gain vectors are estimated from the mixed data by minimizing the joint cost function. We introduce novel update rules that solve the optimization problem efficiently for the new regularized NMF problem. This optimization is challenging due to using energy normalization and GMM for prior modeling, which makes the problem highly nonlinear and non-convex. The experimental results show that the introduced methods improve the performance of single channel source separation for speech separation and speech-music separation with different NMF divergence functions. The experimental results also show that, using the GMM prior gives better separation results than using the conjugate prior.


Digital Signal Processing | 2014

Source separation using regularized NMF with MMSE estimates under GMM priors with online learning for the uncertainties

Emad M. Grais; Hakan Erdogan

We propose a new method to incorporate priors on the solution of nonnegative matrix factorization (NMF). The NMF solution is guided to follow the minimum mean square error (MMSE) estimates of the weight combinations under a Gaussian mixture model (GMM) prior. The proposed algorithm can be used for denoising or single-channel source separation (SCSS) applications. NMF is used in SCSS in two main stages, the training stage and the separation stage. In the training stage, NMF is used to decompose the training data spectrogram for each source into a multiplication of a trained basis and gains matrices. In the separation stage, the mixed signal spectrogram is decomposed as a weighted linear combination of the trained basis matrices for the source signals. In this work, to improve the separation performance of NMF, the trained gains matrices are used to guide the solution of the NMF weights during the separation stage. The trained gains matrix is used to train a prior GMM that captures the statistics of the valid weight combinations that the columns of the basis matrix can receive for a given source signal. In the separation stage, the prior GMMs are used to guide the NMF solution of the gains/weights matrices using MMSE estimation. The NMF decomposition weights matrix is treated as a distorted image by a distortion operator, which is learned directly from the observed signals. The MMSE estimate of the weights matrix under the trained GMM prior and log-normal distribution for the distortion is then found to improve the NMF decomposition results. The MMSE estimate is embedded within the optimization objective to form a novel regularized NMF cost function. The corresponding update rules for the new objectives are derived in this paper. The proposed MMSE estimates based regularization avoids the problem of computing the hyper-parameters and the regularization parameters. MMSE also provides a better estimate for the valid gains matrix. Experimental results show that the proposed regularized NMF algorithm improves the source separation performance compared with using NMF without a prior or with other prior models.


signal processing and communications applications conference | 2012

Audio-visual speech recognition with background music using single-channel source separation

Emad M. Grais; Ibrahim Saygin Topkaya; Hakan Erdogan

In this paper, we consider audio-visual speech recognition with background music. The proposed algorithm is an integration of audio-visual speech recognition and single channel source separation (SCSS). We apply the proposed algorithm to recognize spoken speech that is mixed with music signals. First, the SCSS algorithm based on nonnegative matrix factorization (NMF) and spectral masks is used to separate the audio speech signal from the background music in magnitude spectral domain. After speech audio is separated from music, regular audio-visual speech recognition (AVSR) is employed using multi-stream hidden Markov models. Employing two approaches together, we try to improve recognition accuracy by both processing the audio signal with SCSS and supporting the recognition task with visual information. Experimental results show that combining audio-visual speech recognition with source separation gives remarkable improvements in the accuracy of the speech recognition system.


international conference on pattern recognition | 2010

Semi-blind Speech-Music Separation Using Sparsity and Continuity Priors

Hakan Erdogan; Emad M. Grais

In this paper we propose an approach for the problem of single channel source separation of speech and music signals. Our approach is based on representing each sources power spectral density using dictionaries and nonlinearly projecting the mixture signal spectrum onto the combined span of the dictionary entries. We encourage sparsity and continuity of the dictionary coefficients using penalty terms (or log-priors) in an optimization framework. We propose to use a novel coordinate descent technique for optimization, which nicely handles nonnegativity constraints and nonquadratic penalty terms. We use an adaptive Wiener filter, and spectral subtraction to reconstruct both of the sources from the mixture data after corresponding power spectral densities (PSDs) are estimated for each source. Using conventional metrics, we measure the performance of the system on simulated mixtures of single person speech and piano music sources. The results indicate that the proposed method is a promising technique for low speech-to-music ratio conditions and that sparsity and continuity priors help improve the performance of the proposed system.


conference of the international speech communication association | 2016

Combining Mask Estimates for Single Channel Audio Source Separation using Deep Neural Networks

Emad M. Grais; Gerard Roma; Andrew J. R. Simpson; Mark D. Plumbley

Deep neural networks (DNNs) are usually used for single channel source separation to predict either soft or binary time frequency masks. The masks are used to separate the sources from the mixed signal. Binary masks produce separated sources with more distortion and less interference than soft masks. In this paper, we propose to use another DNN to combine the estimates of binary and soft masks to achieve the advantages and avoid the disadvantages of using each mask individually. We aim to achieve separated sources with low distortion and low interference between each other. Our experimental results show that combining the estimates of binary and soft masks using DNN achieves lower distortion than using each estimate individually and achieves as low interference as the binary mask.


european signal processing conference | 2016

Evaluation of audio source separation models using hypothesis-driven non-parametric statistical methods

Andrew J. R. Simpson; Gerard Roma; Emad M. Grais; Russell Mason; Christopher Hummersone; Antoine Liutkus; Mark D. Plumbley

Audio source separation models are typically evaluated using objective separation quality measures, but rigorous statistical methods have yet to be applied to the problem of model comparison. As a result, it can be difficult to establish whether or not reliable progress is being made during the development of new models. In this paper, we provide a hypothesis-driven statistical analysis of the results of the recent source separation SiSEC challenge involving twelve competing models tested on separation of voice and accompaniment from fifty pieces of “professionally produced” contemporary music. Using non-parametric statistics, we establish reliable evidence for meaningful conclusions about the performance of the various models.


international conference on latent variable analysis and signal separation | 2017

Discriminative Enhancement for Single Channel Audio Source Separation using Deep Neural Networks

Emad M. Grais; Gerard Roma; Andrew J. R. Simpson; Mark D. Plumbley

The sources separated by most single channel audio source separation techniques are usually distorted and each separated source contains residual signals from the other sources. To tackle this problem, we propose to enhance the separated sources to decrease the distortion and interference between the separated sources using deep neural networks (DNNs). Two different DNNs are used in this work. The first DNN is used to separate the sources from the mixed signal. The second DNN is used to enhance the separated signals. To consider the interactions between the separated sources, we propose to use a single DNN to enhance all the separated sources together. To reduce the residual signals of one source from the other separated sources (interference), we train the DNN for enhancement discriminatively to maximize the dissimilarity between the predicted sources. The experimental results show that using discriminative enhancement decreases the distortion and interference between the separated sources.


IEEE Transactions on Audio, Speech, and Language Processing | 2017

Two-Stage Single-Channel Audio Source Separation Using Deep Neural Networks

Emad M. Grais; Gerard Roma; Andrew J. R. Simpson; Mark D. Plumbley

Most single channel audio source separation approaches produce separated sources accompanied by interference from other sources and other distortions. To tackle this problem, we propose to separate the sources in two stages. In the first stage, the sources are separated from the mixed signal. In the second stage, the interference between the separated sources and the distortions are reduced using deep neural networks (DNNs). We propose two methods that use DNNs to improve the quality of the separated sources in the second stage. In the first method, each separated source is improved individually using its own trained DNN, while in the second method all the separated sources are improved together using a single DNN. To further improve the quality of the separated sources, the DNNs in the second stage are trained discriminatively to further decrease the interference and the distortions of the separated sources. Our experimental results show that using two stages of separation improves the quality of the separated signals by decreasing the interference between the separated sources and distortions compared to separating the sources using a single stage of separation.

Collaboration


Dive into the Emad M. Grais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Roma

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic Ward

Birmingham City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hagen Wierstorf

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hagen Wierstorf

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge