Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eman Zahran is active.

Publication


Featured researches published by Eman Zahran.


Fish & Shellfish Immunology | 2014

Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus)

Eman Zahran; Engy Risha; Fatma Abdelhamid; Hebata Allah Mahgoub; Tarek M. Ibrahim

This work investigated the potential immunomodulatory and growth-promoting effects of Astragalus polysaccharides (APS) in Nile tilapia (Oreochromis niloticus). The dietary supplementation with APS (1500 mg/kg of diet) caused a significant increase in growth parameters (initial and final weight, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR) and feed intake (FI), when compared to non-supplemented control basal diet. In addition, APS upregulated the phagocytic activity, the respiratory burst activity, plasma lysozyme, the bactericidal activity, superoxide dismutase (SOD), glutathione peroxidase (GPx), and amylase activity. However, it had no effect on serum nitric oxide (NO) or Malondialdehyde (MDA) levels. While APS had no effect of intestinal histology, a slight increase in the villi length was recorded. Collectively, our results indicate that dietary APS supplementation could improve the growth performance and the immune parameters of cultured tilapia fish.


Fish & Shellfish Immunology | 2014

Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus)

Eman Zahran; Engy Risha

Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses.


Veterinary Immunology and Immunopathology | 2014

Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinus, immunosuppressed by cadmium chloride

Mohamed El-Boshy; Ahmed El-Ashram; Engy Risha; Fatma Abdelhamid; Eman Zahran; Ali Gab-Alla

Fucoidan is sulfated polysaccharide extracted from seaweed brown algae. This study was designed to evaluate the immunomodulatory effects and disease resistance of dietary fucoidan on catfish, Clarias gariepinus, immunosuppressed by cadmium. Three hundred and sixty African catfish, C. gariepinus, was allocated into six equal groups. The first group served as a control. Groups (F1 and F2) were fed on fucoidan supplemented ration at concentrations of 4 and 6g/kg diet respectively for 21 days. Groups (Cd, CdF1 and CdF2) were subjected throughout the experiment to a sub-lethal concentration of 5ppm cadmium chloride solution and groups (CdF1 and CdF2) were fed on a ration supplemented with fucoidan. Macrophages oxidative burst, phagocytic activity percentages and lymphocytes transformation index were a significant increase in the fucoidan-treated groups (F1 and F2), while serum lysozyme, nitric oxide and bactericidal activity were enhanced only in group (F2) when compared with controls. These parameters as well as absolute lymphocyte count and survival rate were significantly increased in group (CdF2) when compared with cadmium chloride immunosuppressed group (Cd). It could be concluded that the fucoidan can be used as immunostimulant for the farmed African catfish, C. gariepinus as it can improve its resistance to immunosuppressive stressful conditions.


Molecular Immunology | 2016

Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen

Bartolomeo Gorgoglione; Eman Zahran; Nick G. H. Taylor; Stephen W. Feist; Jun Zou; Christopher J. Secombes

Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids.


Fish & Shellfish Immunology | 2018

Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus)

Eman Zahran; Eman A. Abd El-Gawad; Engy Risha

&NA; In the present study, effect of dietary Withania sominefera (W. sominefera) root powder was evaluated to modulate immune and antioxidant response against Aeromonas hydrophila (A. hydrophila) infection in Nile tilapia (Oreochromis niloticus). W. sominefera root powder supplemented diets at two concentrations 2.5% (W 2.5%) and 5% (W 5%); fed for 6 weeks prior to the A. hydrophila challenge and continued the same respective diets during the post challenge period (2 weeks). Results showed that fish fed W. sominefera at 5% enhanced immune response in both pre and post‐challenge period. NBT level exhibited only significant increase (P < 0.05) in the pre‐challenge period compared to control. Malondialdehyde (MDA) levels in liver and muscle revealed significant decrease in both Withania supplemented groups compared to the control in post challenge period. Antioxidant enzymes activities (catalase/CAT/, glutathione S‐transferase/GST/, glutathione/GSH; and superoxide dismutase/SOD) were improved in liver and muscle in post challenge period. Glutathione peroxidase (GPx) level in muscle and serum total antioxidant capacity (TAC) showed a significant increase in both Withania supplemented groups compared to the control post challenge. Withania supplementation enhanced disease resistance against A. hydrophila and reduced mortalities (20%), especially at supplemented concentration of 5%. Our findings suggest that W. sominefera root powder may have protective and immunotherapeutic roles in Nile tilapia against A. hydrophila infection which may be useful in controlling important fish bacterial diseases. HighlightsWithania sominefera (WSF) are recognized as a potent medicinal herb.Dietary WSF enhanced the immune and antioxidant response in Nile tilapia.Immunotherapeutic effect of dietary WSF was evident against Aeromonas infection.Dietary WSF may be of usefulness in controlling fish bacterial diseases.


Aquatic Toxicology | 2018

Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus)

Eman Zahran; Engy Risha; Walaa Awadin; Dušan Palić

Chlorpyrifos (CPF) is one of the most common insecticides found in freshwater ecosystems, and has been detected in agricultural and fishery products worldwide. This study focused on comprehensive panel of hematological, immunotoxic and pathology changes in Nile tilapia (Oreochromis niloticus) during and after exposure to CPF at 15 μg/L (0.043 μM) (1/10 LC50, group CPF1), or 75 μg/L (0.21 μM) (1/2 LC50, group CPF2) for 14 days, followed by 2 weeks recovery. Different endpoints were used to determine effects of CPF on fish health: hematological parameters; antioxidant levels in liver and gills; innate immune parameters; expression levels of pro-inflammatory cytokine genes at mRNA level in anterior kidney and spleen; and histopathological assessment of gills, liver, and kidney tissues. RBCs were significantly decreased in CPF1 group compared to other groups only at day 3. Blood packed cell volume (PCV) and mean corpuscular volume (MCV) showed significant increase at day 3 and 14 of CPF exposure. TLC (Total Leukocytic Counts), neutrophil counts were significantly increased in CPF exposed groups at days 3, 7, 14 compared to the control. While, lymphocytes counts were significantly increased at CPF1 group compared to other groups at day 14. Antioxidant enzyme activity in liver and gills showed significant increase of Malondialdehyde (MDA) and glutathione (GSH), and significant decrease in (catalase/CAT/, glutathione S-transferase/GST/, and superoxide dismutase/SOD/); in CPF exposed groups. Serum bactericidal and lysozyme activity was nominally and significantly decreased, respectively, and whole blood respiratory burst was significantly increased in CPF2 group. The cytokine expression levels showed complex changes in expression patterns. In kidney, cytokine interleukin-8 (IL-8) was significantly upregulated at day 1 in both exposed group. Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNFα) were significantly upregulated at day 1 in CPF1 group, and then IL-8 and TNFα downregulated at day 3 in same group. At day 7, only TNFα was up and downregulated in CPF1 and CPF2, respectively compared to control. All gene expression levels in spleen were upregulated on day 7 of exposure in the high exposed group. Histopathology showed dose-dependent changes in CPF treated groups, indicating gill, liver, and posterior kidney changes associated with oxidative stress damages. Following recovery period, all measured parameters showed varying degrees in their reversibility to the control level. These findings provide important insights about the acute toxic effects of CPF on fish and show potential to be used as biomarkers in further toxicological evaluation studies.


Journal of Aquatic Animal Health | 2017

Saprolegniosis in Nile Tilapia: Identification, Molecular Characterization, and Phylogenetic Analysis of Two Novel Pathogenic Saprolegnia Strains

Eman Zahran; Elsayed E. Hafez; Ferdaus Mohd. Altaf Hossain; Mohamed Elhadidy; Adel Shaheen

Saprolegniosis is a fungal infection that leads to huge economic losses in tilapia aquaculture. Saprolegnia spp. are usually implicated as the etiological agents, but their identification is sometimes troublesome and confusing. In this study, two Saprolegnia strains (ManS22 and ManS33) were isolated from Nile Tilapia Oreochromis niloticus suffering from saprolegniosis. Both isolates were characterized morphologically and from internal transcribed spacer (ITS) sequence data. Additionally, both strains were tested for pathogenicity, and they were highly pathogenic and caused cumulative mortalities of 88.9% and 95.6%, respectively. Initially, the two strains were identified, by morphology of sexual and asexual stages, as members of the genus Saprolegnia. For more definitive identification and characterization, the ITS region of the ribosomal RNA genes was amplified and sequenced, and sequences were compared with other known sequences in GenBank. A phylogenetic tree constructed using the neighbor-joining method revealed that the two strains fell into two clusters within the species Saprolegnia parasitica. Cluster 1 included the ManS33 strain and cluster 2 the ManS22 strain. Cluster 1 grouped the ManS33 strain with other S. parasitica stains and shared 97-99% sequence similarity. Cluster 2 contained only the ManS22 strain and shared 93-94% similarity to several reference sequences of S. parasitica strains. Therefore, our findings suggest that ManS22 represents a newly described strain of S. parasitica. Received April 19, 2016; accepted October 27, 2016.


SpringerPlus | 2013

Protective role of adjuvant and potassium permanganate on oxidative stress response of Nile tilapia (Oreochromis niloticus) challenged with Saprolegnia ferax

Eman Zahran; Engy Risha


Journal of Food Safety | 2017

The efficacy of bacterial and yeasts strains and their combination to bind aflatoxin B1 and B2 in artificially contaminated infants food

Gamal M. Hamad; Eman Zahran; Elsayed E. Hafez


Fish & Shellfish Immunology | 2018

Corrigendum to "The effect of Ochratoxin A on antimicrobial polypeptide expression and resistance to water mold infection in channel catfish (Ictalurus punctatus)" [Fish Shellfish Immunol. 57 (2016) 60–67]

Eman Zahran; Bruce B. Manning; Jung-Kil Seo; Edward J. Noga

Collaboration


Dive into the Eman Zahran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge