Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuel Maltempi de Souza is active.

Publication


Featured researches published by Emanuel Maltempi de Souza.


PLOS Genetics | 2011

Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

Fábio O. Pedrosa; Rose A. Monteiro; Roseli Wassem; Leonardo M. Cruz; Ricardo A. Ayub; Nelson Barros Colauto; Maria Aparecida Fernandez; Maria Helena Pelegrinelli Fungaro; Edmundo C. Grisard; Mariangela Hungria; Humberto Maciel França Madeira; Rubens Onofre Nodari; Clarice Aoki Osaku; Maria Luiza Petzl-Erler; Hernán Terenzi; Luiz G. E. Vieira; Maria B. R. Steffens; Vinicius A. Weiss; Luiz Filipe Protasio Pereira; Marina Isabel Mateus de Almeida; Lysangela R. Alves; A. M. Marin; Luíza M. Araújo; Eduardo Balsanelli; Valter A. Baura; Leda S. Chubatsu; Helisson Faoro; Augusto Favetti; Geraldo R. Friedermann; Chirlei Glienke

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.


FEMS Microbiology Ecology | 2003

Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants

Lauren D.B Roncato-Maccari; Humberto J.O. Ramos; Fábio O. Pedrosa; Yedo Alquini; Leda S. Chubatsu; M. G. Yates; L. U. Rigo; Maria B. R. Steffens; Emanuel Maltempi de Souza

Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.


Journal of Biotechnology | 2002

Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector.

Humberto J.O. Ramos; Lauren D.B Roncato-Maccari; Emanuel Maltempi de Souza; Juliana R.L. Soares-Ramos; Mariangela Hungria; Fábio O. Pedrosa

To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work.


Applied and Environmental Microbiology | 2001

16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril)

Leonardo M. Cruz; Emanuel Maltempi de Souza; Olmar Baler Weber; José Ivo Baldani; Johanna Döbereiner; Fábio O. Pedrosa

ABSTRACT Nitrogen-fixing bacteria isolated from banana (Musaspp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans,Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and betaProteobacteria.


Plant and Soil | 2012

Herbaspirillum-plant interactions: microscopical, histological and molecular aspects

Rose A. Monteiro; Eduardo Balsanelli; Roseli Wassem; A. M. Marin; Liziane Cc Brusamarello-Santos; Maria Augusta Schmidt; Michelle Z. Tadra-Sfeir; Vânia C. S. Pankievicz; Leonardo M. Cruz; Leda S. Chubatsu; Fábio O. Pedrosa; Emanuel Maltempi de Souza

Diazotrophic species in the genus Herbaspirillum (e.g. H. frisingense, H. rubrisubalbicans and H. seropedicae) associate with several economically important crops in the family Poaceae, such as maize (Zea mays), Miscanthus, rice (Oryza sativa), sorghum (Sorghum bicolor) and sugarcane (Saccharum sp.), and can increase their growth and productivity by a number of mechanisms, including nitrogen fixation. Hence, the improvement and use of these plant growth-promoting bacteria could provide economic and environmental benefits. We review the colonization processes of host plants by Herbaspirillum spp., including histological aspects and molecular mechanisms involved in these interactions, which may be epiphytic, endophytic, and even occasionally pathogenic. Herbaspirillum can recognize plant signals that modulate the expression of colonization traits and plant growth-promoting factors. Although a large proportion of herbaspirilla remain rhizospheric and epiphytic, plant-associated species in this genus are noted for their ability to colonize the plant internal tissues. Endophytic colonization by herbaspirilla begins with the attachment of the bacteria to root surfaces, followed by colonization at the emergence points of lateral roots and penetration through discontinuities of the epidermis; this appears to involve bacterial envelope structures, such as lipopolysaccharide (LPS), exopolysaccharide (EPS), adhesins and the type three secretion system (T3SS), but not necessarily the involvement of cell wall-degrading enzymes. Intercellular spaces are then rapidly occupied, proceeding to colonization of xylem and the aerial parts of the host plants. The response of the host plant includes both the recognition of the bacteria as non-pathogenic and the induction of systemic resistance to pathogens. Phytohormone signaling cascades are also activated, regulating the plant development. This complex molecular communication between some Herbaspirillum spp. and plant hosts can result in plant growth-promotion.


Environmental Microbiology | 2010

Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.

Eduardo Balsanelli; Rodrigo V. Serrato; Valter A. Baura; Guilherme L. Sassaki; M. G. Yates; Liu Un Rigo; Fábio O. Pedrosa; Emanuel Maltempi de Souza; Rose A. Monteiro

In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.


Molecular Microbiology | 2006

ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG

Luciano F. Huergo; Emanuel Maltempi de Souza; Mariana S. Araujo; Fábio O. Pedrosa; Leda S. Chubatsu; Maria B. R. Steffens; Mike Merrick

Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.


Biochimica et Biophysica Acta | 2009

FIRST EVIDENCE FOR THE SALT-DEPENDENT FOLDING AND ACTIVITY OF AN ESTERASE FROM THE HALOPHILIC ARCHAEA HALOARCULA MARISMORTUI

Marcelo Müller-Santos; Emanuel Maltempi de Souza; Fábio O. Pedrosa; David A. Mitchell; Sonia Longhi; Frédéric Carrière; Stéphane Canaan; Nadia Krieger

A gene encoding an esterase from Haloarcula marismortui, a halophilic archaea from the Dead Sea, was cloned, expressed in Escherichia coli, and the recombinant protein (Hm EST) was biochemically characterized. The enzymatic activity of Hm EST was shown to exhibit salt dependence through salt-dependent folding. Hm EST exhibits a preference for short chain fatty acids and monoesters. It is inhibited by phenylmethylsulfonyl fluoride, diethyl-p-nitrophenyl phosphate, and 5-methoxy-3-(4-phenoxyphenyl)-3H-[1,3,4]oxadiazol-2-one, confirming the conclusion from sequence alignments that Hm EST is a serine carboxylesterase belonging to the hormone-sensitive lipase family. The activity of Hm EST is optimum in the presence of 3 M KCl and no activity was detected in the absence of salts. Far-UV circular dichroism showed that Hm EST is totally unfolded in salt-free medium and secondary structure appears in the presence of 0.25-0.5 M KCl. After salt depletion, the protein was able to recover 60% of its initial activity when 2 M KCl was added. A 3D model of Hm EST was built and its surface properties were analyzed, pointing to an enrichment in acidic residues paralleled by a depletion in basic residues. This peculiar charge repartition at the protein surface supports a better stability of the protein in a high salt environment.


Molecular Microbiology | 2007

Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria

Luciano F. Huergo; Mike Merrick; Fábio O. Pedrosa; Leda S. Chubatsu; Luíza M. Araújo; Emanuel Maltempi de Souza

Ammonium movement across biological membranes is facilitated by a class of ubiquitous channel proteins from the Amt/Rh family. Amt proteins have also been implicated in cellular responses to ammonium availability in many organisms. Ammonium sensing by Amt in bacteria is mediated by complex formation with cytosolic proteins of the PII family. In this study we have characterized in vitro complex formation between the AmtB and PII proteins (GlnB and GlnZ) from the diazotrophic plant‐associative bacterium Azospirillum brasilense. AmtB–PII complex formation only occurred in the presence of adenine nucleotides and was sensitive to 2‐oxoglutarate when Mg2+ and ATP were present, but not when ATP was substituted by ADP. We have also shown in vitro complex formation between GlnZ and the nitrogenase regulatory enzyme DraG, which was stimulated by ADP. The stoichiometry of this complex was 1:1 (DraG monomer : GlnZ trimer). We have previously reported that in vivo high levels of extracellular ammonium cause DraG to be sequestered to the cell membrane in an AmtB and GlnZ‐dependent manner. We now report the reconstitution of a ternary complex involving AmtB, GlnZ and DraG in vitro. Sequestration of a regulatory protein by the membrane‐bound AmtB–PII complex defines a new regulatory role for Amt proteins in Prokaryotes.


BMC Genomics | 2014

Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes

Doumit Camilios-Neto; Paloma Bonato; Roseli Wassem; Michelle Z. Tadra-Sfeir; Liziane Cc Brusamarello-Santos; Glaucio Valdameri; Lucélia Donatti; Helisson Faoro; Vinicius A. Weiss; Leda S. Chubatsu; Fábio O. Pedrosa; Emanuel Maltempi de Souza

BackgroundThe rapid growth of the world’s population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB.ResultsWe performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes.ConclusionsPGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

Collaboration


Dive into the Emanuel Maltempi de Souza's collaboration.

Top Co-Authors

Avatar

Fábio O. Pedrosa

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Leda S. Chubatsu

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Rose A. Monteiro

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Luciano F. Huergo

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

L. U. Rigo

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

M. G. Yates

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Leonardo M. Cruz

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Roseli Wassem

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

F. O. Pedrosa

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Maria B. R. Steffens

Federal University of Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge