Emanuela Dattolo
Stazione Zoologica Anton Dohrn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emanuela Dattolo.
Nature | 2016
Jeanine L. Olsen; Pierre Rouzé; Bram Verhelst; Yao-Cheng Lin; Till Bayer; Jonas Collén; Emanuela Dattolo; Emanuele De Paoli; Simon M. Dittami; Florian Maumus; Gurvan Michel; Anna R. Kersting; Chiara Lauritano; Rolf Lohaus; Mats Töpel; Thierry Tonon; Kevin Vanneste; Mojgan Amirebrahimi; Janina Brakel; Christoffer Boström; Mansi Chovatia; Jane Grimwood; Jerry Jenkins; Alexander Jueterbock; Amy Mraz; Wytze T. Stam; Hope Tice; Erich Bornberg-Bauer; Pamela J. Green; Gareth A. Pearson
Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
Frontiers in Plant Science | 2013
Emanuela Dattolo; Jenny Gu; Philipp E. Bayer; Silvia Mazzuca; Ilia Anna Serra; Antonia Spadafora; Letizia Bernardo; Lucia Natali; Andrea Cavallini; Gabriele Procaccini
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Botanica Marina | 2013
Dorris N. Jongma; Davide Campo; Emanuela Dattolo; Daniela D’Esposito; Antonino Duchi; Peter Grewe; John M. Huisman; Marc Verlaque; Mehmet Baki Yokes; Gabriele Procaccini
Abstract On the basis of morphological and molecular studies, we identified the Australian endemic green alga known as Caulerpa distichophylla along the coasts of Sicily (Italy, Mediterranean Sea). The slender Caulerpa previously reported as C. taxifolia from southeastern Turkey (Gulf of Iskenderun) also belongs to C. distichophylla. Morphologically, C. distichophylla clearly differs from C. taxifolia in its slender thallus and the lack of large rhizoidal pillars. However, genetic data do not provide undisputed evidence that the species are distinct. Sequences of the tufA cpDNA gene and of the cp 16S rDNA intron-2 sequences separated the two taxa by only one single nucleotide mutation, whereas ITS rDNA sequences did not clearly distinguish them. The new combination Caulerpa taxifolia var. distichophylla is therefore proposed. Western and eastern Mediterranean populations of C. taxifolia var. distichophylla are probably the result of introduction events from southwestern Australia. Although the vector of primary introductions remains unknown (aquarium trade or shipping), maritime traffic appears to be the most likely vector of secondary dispersal. C. taxifolia var. distichophylla is closely related to C. taxifolia, hence interbreeding with the other C. taxifolia strains in the Mediterranean Sea might be expected to occur.
Scientific Reports | 2016
Lázaro Marín-Guirao; Juan Manuel Ruiz; Emanuela Dattolo; Rocío García-Muñoz; Gabriele Procaccini
The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.
Harmful Algae | 2014
Ylenia Carotenuto; Emanuela Dattolo; Chiara Lauritano; Fabio Pisano; Remo Sanges; Antonio Miralto; Gabriele Procaccini; Adrianna Ianora
Diatoms dominate productive regions in the oceans and have traditionally been regarded as sustaining the marine food chain to top consumers and fisheries. However, many of these unicellular algae produce cytotoxic oxylipins that impair reproductive and developmental processes in their main grazers, crustacean copepods. The molecular mode of action of diatoms and diatom oxylipins on copepods is still unclear. In the present study we generated two Expressed Sequence Tags (ESTs) libraries of the copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi and the cryptophyte Rhodomonas baltica as a control, using suppression subtractive hybridization (SSH). Our aim was to investigate differences in the transcriptome between females fed toxic and non-toxic food and identify differentially expressed genes and biological processes targeted by this diatom. We produced 947 high quality ESTs from both libraries, 475 of which were functionally annotated and deposited in GenBank. Clustering and assembling of ESTs resulted in 376 unique transcripts, 200 of which were functionally annotated. Functional enirchment analysis between the two SSH libraries showed that ESTs belonging to biological processes such as response to stimuli, signal transduction, and protein folding were significantly over-expressed in the S. marinoi-fed C. helgolandicus compared to R. baltica-fed C. helgolandicus library. These findings were confirmed by RT-qPCR analysis. In summary, 2 days of feeding on S. marinoi activated a generalized Cellular Stress Response (CSR) in C. helgolandicus, by over-expressing genes of molecular chaperones and signal transduction pathways that protect the copepod from the immediate effects of the diatom diet. Our results provide insights into the response of copepods to a harmful diatom diet at the transcriptome level, supporting the hypothesis that diatom oxylipins elicit a stress response in the receiving organism. They also increase the genomic resources for this copepod species, whose importance could become ever more relevant for pelagic ecosystem functioning in European waters due to global warming.
Scientific Reports | 2017
Gabriele Procaccini; Miriam Ruocco; Lázaro Marín-Guirao; Emanuela Dattolo; Christophe Brunet; Daniela D’Esposito; Chiara Lauritano; Silvia Mazzuca; Ilia Anna Serra; Letizia Bernardo; Amalia Piro; Sven Beer; Mats Björk; Martin Gullström; Pimchanok Buapet; Lina M. Rasmusson; Paulo Felisberto; Sylvie Gobert; John W. Runcie; João Albino Silva; Irene Olivé; Monya M. Costa; Isabel Barrote; Rui Santos
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.
Frontiers in Plant Science | 2017
Lázaro Marín-Guirao; Laura Entrambasaguas; Emanuela Dattolo; Juan M. Ruiz; Gabriele Procaccini
The endemic Mediterranean seagrass Posidonia oceanica is highly threatened by the increased frequency and intensity of heatwaves. Meadows of the species offer a unique opportunity to unravel mechanisms marine plants activate to cope transient warming, since their wide depth distribution impose divergent heat-tolerance. Understanding these mechanisms is imperative for their conservation. Shallow and deep genotypes within the same population were exposed to a simulated heatwave in mesocosms, to analyze their transcriptomic and photo-physiological responses during and after the exposure. Shallow plants, living in a more unstable thermal environment, optimized phenotype variation in response to warming. These plants showed a pre-adaptation of genes in anticipation of stress. Shallow plants also showed a stronger activation of heat-responsive genes and the exclusive activation of genes involved in epigenetic mechanisms and in molecular mechanisms that are behind their higher photosynthetic stability and respiratory acclimation. Deep plants experienced higher heat-induced damage and activated metabolic processes for obtaining extra energy from sugars and amino acids, likely to support the higher protein turnover induced by heat. In this study we identify transcriptomic mechanisms that may facilitate persistence of seagrasses to anomalous warming events and we discovered that P. oceanica plants from above and below the mean depth of the summer thermocline have differential resilience to heat.
Ecology and Evolution | 2017
Emanuela Dattolo; Lázaro Marín-Guirao; Juan M. Ruiz; Gabriele Procaccini
Abstract Phenotypic differences among populations of the same species reflect selective responses to ecological gradients produced by variations in abiotic and biotic factors. Moreover, they can also originate from genetic differences among populations, due to a reduced gene flow. In this study, we examined the extent of differences in photo‐acclimative traits of Posidonia oceanica (L.) Delile clones collected above and below the summer thermocline (i.e., −5 and −25 m) in a continuous population extending along the water depth gradient. During a reciprocal light exposure and subsequent recovery in mesocosms, we assessed degree of phenotypic plasticity and local adaptation of plants collected at different depths, by measuring changes in several traits, such as gene expression of target genes, photo‐physiological features, and other fitness‐related traits (i.e., plant morphology, growth, and mortality rates). Samples were also genotyped, using microsatellite markers, in order to evaluate the genetic divergence among plants of the two depths. Measures collected during the study have shown a various degree of phenotypic changes among traits and experimental groups, the amount of phenotypic changes observed was also dependent on the type of light environments considered. Overall plants collected at different depths seem to be able to acclimate to reciprocal light conditions in the experimental time frame, through morphological changes and phenotypic buffering, supported by the plastic regulation of a reduced number of genes. Multivariate analyses indicated that plants cluster better on the base of their depth origin rather than the experimental light conditions applied. The two groups were genetically distinct, but the patterns of phenotypic divergence observed during the experiment support the hypothesis that ecological selection can play a role in the adaptive divergence of P. oceanica clones along the depth gradient.
Heredity | 2018
Marlene Jahnke; Daniela D’Esposito; Luigi Orrù; Antonella Lamontanara; Emanuela Dattolo; Fabio Badalamenti; Silvia Mazzuca; Gabriele Procaccini; Luisa Orsini
Seagrass meadows provide important ecosystem services and are critical for the survival of the associated invertebrate community. However, they are threatened worldwide by human-driven environmental change. Understanding the seagrasses’ potential for adaptation is critical to assess not only their ability to persist under future global change scenarios, but also to assess the persistence of the associated communities. Here we screened a wild population of Posidonia oceanica, an endemic long-lived seagrass in the Mediterranean Sea, for genes that may be target of environmental selection, using an outlier and a genome-wide transcriptome analysis. We identified loci where polymorphism or differential expression was associated with either a latitudinal or a bathymetric gradient, as well as with both gradients in an effort to identify loci associated with temperature and light. We found the candidate genes underlying growth and immunity to be divergent between populations adapted to different latitudes and/or depths, providing evidence for local adaptation. Furthermore, we found evidence of reduced gene flow among populations including adjacent populations. Reduced gene flow, combined with low sexual recombination, small effective population size, and long generation time of P. oceanica raises concerns for the long-term persistence of this species, especially in the face of rapid environmental change driven by human activities.
Marine Biology | 2012
Ilia Anna Serra; Chiara Lauritano; Emanuela Dattolo; Andrea Puoti; Silvia Nicastro; Anna Maria Innocenti; Gabriele Procaccini