Emanuela Pedrazzini
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emanuela Pedrazzini.
Journal of Cell Biology | 2003
Erik L. Snapp; Ramanujan S. Hegde; Maura Francolini; Francesca Lombardo; Sara Francesca Colombo; Emanuela Pedrazzini; Nica Borgese; Jennifer Lippincott-Schwartz
The endoplasmic reticulum (ER) can transform from a network of branching tubules into stacked membrane arrays (termed organized smooth ER [OSER]) in response to elevated levels of specific resident proteins, such as cytochrome b(5). Here, we have tagged OSER-inducing proteins with green fluorescent protein (GFP) to study OSER biogenesis and dynamics in living cells. Overexpression of these proteins induced formation of karmellae, whorls, and crystalloid OSER structures. Photobleaching experiments revealed that OSER-inducing proteins were highly mobile within OSER structures and could exchange between OSER structures and surrounding reticular ER. This indicated that binding interactions between proteins on apposing stacked membranes of OSER structures were not of high affinity. Addition of GFP, which undergoes low affinity, antiparallel dimerization, to the cytoplasmic domains of non–OSER-inducing resident ER proteins was sufficient to induce OSER structures when overexpressed, but addition of a nondimerizing GFP variant was not. These results point to a molecular mechanism for OSER biogenesis that involves weak homotypic interactions between cytoplasmic domains of proteins. This mechanism may underlie the formation of other stacked membrane structures within cells.
Journal of Cell Biology | 2003
Nica Borgese; Sara Francesca Colombo; Emanuela Pedrazzini
A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the proteins function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet.
Traffic | 2008
Nicholas Tolley; Imogen Sparkes; Paul R. Hunter; Christian P. Craddock; James Nuttall; Lynne M. Roberts; Chris Hawes; Emanuela Pedrazzini; Lorenzo Frigerio
We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP‐tagged, myc‐tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.
Traffic | 2013
Emanuela Pedrazzini; Nataliya Y. Komarova; Doris Rentsch; Alessandro Vitale
Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein‐specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant‐negative mutants of Rab GTPases.
The Plant Cell | 1997
Francesca Lupattelli; Emanuela Pedrazzini; Roberto Bollini; Alessandro Vitale; Aldo Ceriotti
Many of the proteins that are translocated into the endoplasmic reticulum are glycosylated with the addition of a 14-saccharide core unit (Glc3Man9GlcNAc2) to specific asparagine residues of the nascent polypeptide. Glucose residues are then removed by endoplasmic reticulum-located glucosidases, with diglucosylated and monoglucosylated intermediates being formed. In this study, we used a cell-free system constituted of wheat germ extract and bean microsomes to examine the role of glucose trimming in the structural maturation of phaseolin, a trimeric glycoprotein that accumulates in the protein storage vacuoles of bean seeds. Removal of glucose residues from the N-linked chains of phaseolin was blocked by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin. If glucose trimming was not allowed to occur, the assembly of phaseolin was accelerated. Conversely, polypeptides bearing partially trimmed glycans were unable to form trimers. The effect of castanospermine on the rate of assembly was much more pronounced for phaseolin polypeptides that have two glycans but was also evident when a single glycan chain was present, indicating that glycan clustering can modulate the effect of glucose trimming on the rate of trimer formation. Therefore, the position of glycan chains and their accessibility to the action of glucosidases can be fundamental elements in the control of the structural maturation of plant glycoproteins.
Plant Physiology | 2011
Marie Maîtrejean; Michael M. Wudick; Camilla Voelker; Bhakti Prinsi; Bernd Mueller-Roeber; Katrin Czempinski; Emanuela Pedrazzini; Alessandro Vitale
The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.
Plant Biotechnology Journal | 2008
Alessandra Barbante; Sarah L. Irons; Chris Hawes; Lorenzo Frigerio; Alessandro Vitale; Emanuela Pedrazzini
The levels of accumulation of recombinant vaccines in transgenic plants are protein specific and strongly influenced by the subcellular compartment of destination. The human immunodeficiency virus protein Nef (negative factor), a promising target for the development of an antiviral vaccine, is a cytosolic protein that accumulates to low levels in transgenic tobacco and is even more unstable when introduced into the secretory pathway, probably because of folding defects in the non-cytosolic environment. To improve Nef accumulation, a new strategy was developed to anchor the molecule to the cytosolic face of the endoplasmic reticulum (ER) membrane. For this purpose, the Nef sequence was fused to the C-terminal domain of mammalian ER cytochrome b5, a long-lived, tail-anchored (TA) protein. This consistently increased Nef accumulation by more than threefold in many independent transgenic tobacco plants. Real-time polymerase chain reaction of mRNA levels and protein pulse-chase analysis indicated that the increase was not caused by higher transcript levels but by enhanced protein stability. Subcellular fractionation and immunocytochemistry indicated that Nef-TA accumulated on the ER membrane. Over-expression of mammalian or plant ER cytochrome b5 caused the formation of stacked membrane structures, as observed previously in similar experiments performed in mammalian cells; however, Nef-TA did not alter membrane organization in tobacco cells. Finally, Nef could be removed in vitro by its tail-anchor, taking advantage of an engineered thrombin cleavage site. These results open up the way to use tail-anchors to improve foreign protein stability in the plant cytosol without perturbing cellular functions.
Journal of Plant Physiology | 1995
Aldo Ceriotti; Emanuela Pedrazzini; Anna Bielli; Giovanna Giovinazzo; Roberto Bollini; Alessandro Vitale
Summary Phaseolin is a trimeric glycoprotein that accumulates in the protein storage vacuoles of common bean (Phaseolus vulgaris L.) seeds. The resistance to proteolytic degradation is likely to be an important feature of native phaseolin, allowing its stable accumulation in the protein storage vacuoles. Acquisition of a protease-resistant structure is linked to the assembly of phaseolin subunits into trimers, a rapid and efficient process occurring in the endoplasmic reticulum. In bean cotyledonary cells phaseolin trimerization is likely to be assisted by cellular factors and occurs also in the presence of inhibitors of N-linked glycosylation. A mechanism devoted to the retention of unassembled subunits and of assembly intermediates in an early compartment of the secretory pathway would guarantee that only the protease-resistant form of the protein is transported to the storage vacuoles, contributing to the overall efficiency of storage protein accumulation.
Plant Biotechnology Journal | 2010
Linda Avesani; Alessandro Vitale; Emanuela Pedrazzini; Maddalena DeVirgilio; Andrea Pompa; Alessandra Barbante; Elisa Gecchele; Paola Dominici; Francesca Morandini; Annalisa Brozzetti; Alberto Falorni; Mario Pezzotti
The 65-kDa isoform of glutamic acid decarboxylase (GAD65) is the major autoantigen implicated in the development of type 1 diabetes mellitus (T1DM). The bulk manufacture of GAD65 is a potential issue in the fight against T1DM but current production platforms are expensive. We show that a catalytically inactive form of GAD65 (GAD65mut) accumulates at up to 2.2% total soluble protein in transgenic tobacco leaves, which is more than 10-fold the levels achieved with active GAD65, yet the protein retains the immunogenic properties required to treat T1DM. This higher yield was found to be a result of a higher rate of protein synthesis and not transcript availability or protein stability. We found that targeting GAD65 to the endoplasmic reticulum, a strategy that increases the accumulation of many recombinant proteins expressed in plants, did not improve production of GAD65mut. The production of a catalytically inactive autoantigen that retains its immunogenic properties could be a useful strategy to provide high-quality therapeutic protein for treatment of autoimmune T1DM.
Frontiers in Plant Science | 2014
Davide Mainieri; Francesca Morandini; Marie Maîtrejean; Andrea Saccani; Emanuela Pedrazzini; Vitale Alessandro
The albumin and globulin seed storage proteins present in all plants accumulate in storage vacuoles. Prolamins, which are the major proteins in cereal seeds and are present only there, instead accumulate within the endoplasmic reticulum (ER) lumen as very large insoluble polymers termed protein bodies. Inter-chain disulfide bonds play a major role in polymerization and insolubility of many prolamins. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body formation when fused to other proteins and contains seven cysteine residues involved in inter-chain bonds. We show that progressive substitution of these amino acids with serine residues in full length γ-zein leads to similarly progressive increase in solubility and availability to traffic from the ER along the secretory pathway. Total substitution results in very efficient secretion, whereas the presence of a single cysteine is sufficient to promote partial sorting to the vacuole via a wortmannin-sensitive pathway, similar to the traffic pathway of vacuolar storage proteins. We propose that the mechanism leading to accumulation of prolamins in the ER is a further evolutionary step of the one responsible for accumulation in storage vacuoles.