Emanuela Polidori
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emanuela Polidori.
Nutrition Metabolism and Cardiovascular Diseases | 2013
R. De Matteis; Francesco Lucertini; Michele Guescini; Emanuela Polidori; Sabrina Zeppa; Vilberto Stocchi; Saverio Cinti
BACKGROUND AND AIM Brown adipose tissue (BAT) plays a major role in body energy expenditure counteracting obesity and obesity-associated morbidities. BAT activity is sustained by the sympathetic nervous system (SNS). Since a massive activation of the SNS was described during physical activity, we investigated the effect of endurance running training on BAT of young rats to clarify the role of exercise training on the activity and recruitment state of brown cells. METHODS AND RESULTS Male, 10-week-old Sprague Dawley rats were trained on a motor treadmill (approximately 60% of VO2max), 5 days/week, both for 1 and 6 weeks. The effect of endurance training was valuated using morphological and molecular approaches. Running training affected on the morphology, sympathetic tone and vascularization of BAT, independently of the duration of the stimulus. Functionally, the weak increase in the thermogenesis (no difference in UCP-1), the increased expression of PGC-1α and the membrane localization of MCT-1 suggest a new function of BAT. Visceral fat increased the expression of the FOXC2, 48 h after last training session and some clusters of UCP-1 paucilocular and multilocular adipocytes appeared. CONCLUSION Exercise seemed a weakly effective stimulus for BAT thermogenesis, but surprisingly, without the supposed metabolically hypoactive effects. The observed browning of the visceral fat, by a supposed white-to-brown transdifferentiation phenomena suggested that exercise could be a new physiological stimulus to counteract obesity by an adrenergic-regulated brown recruitment of adipocytes.
New Phytologist | 2011
P. Ceccaroli; M. Buffalini; R. Saltarelli; E. Barbieri; Emanuela Polidori; S. Ottonello; Annegret Kohler; Emilie Tisserant; Francis L. Martin; V. Stocchi
• Primary carbohydrate metabolism plays a special role related to carbon/nitrogen exchange, as well as metabolic support of fruiting body development, in ectomycorrhizal macrofungi. In this study, we used information retrieved from the recently sequenced Tuber melanosporum genome, together with transcriptome analysis data and targeted validation experiments, to construct the first genome-wide catalogue of the proteins supporting carbohydrate metabolism in a plant-symbiotic ascomycete. • More than 100 genes coding for enzymes of the glycolysis, pentose phosphate, tricarboxylic acid, glyoxylate and methylcitrate pathways, glycogen, trehalose and mannitol metabolism and cell wall precursor were annotated. Transcriptional regulation of these pathways in different stages of the T. melanosporum lifecycle was investigated using whole-genome oligoarray expression data together with real-time reverse transcription-polymerase chain reaction analysis of selected genes. • The most significant results were the identification of methylcitrate cycle genes and of an acid invertase, the first enzyme of this kind to be described in a plant-symbiotic filamentous fungus. • A subset of transcripts coding for trehalose, glyoxylate and methylcitrate enzymes was up-regulated in fruiting bodies, whereas genes involved in mannitol and glycogen metabolism were preferentially expressed in mycelia and ectomycorrhizas, respectively. These data indicate a high degree of lifecycle stage specialization for particular branches of carbohydrate metabolism in T. melanosporum.
Journal of Aging Research | 2011
Elena Barbieri; Michela Battistelli; Lucia Casadei; Luciana Vallorani; Giovanni Piccoli; Michele Guescini; Anna Maria Gioacchini; Emanuela Polidori; Sabrina Zeppa; Paola Ceccaroli; Laura Stocchi; Vilberto Stocchi; Elisabetta Falcieri
This study describes mitochondrial behaviour during the C2C12 myoblast differentiation program and proposes a proteomic approach to mitochondria integrated with classical morphofunctional and biochemical analyses. Mitochondrial ultrastructure variations were determined by transmission electron microscopy; mitochondrial mass and membrane potential were analysed by Mitotracker Green and JC-1 stains and by epifluorescence microscope. Expression of PGC1α, NRF1α, and Tfam genes controlling mitochondrial biogenesis was studied by real-time PCR. The mitochondrial functionality was tested by cytochrome c oxidase activity and COXII expression. Mitochondrial proteomic profile was also performed. These assays showed that mitochondrial biogenesis and activity significantly increase in differentiating myotubes. The proteomic profile identifies 32 differentially expressed proteins, mostly involved in oxidative metabolism, typical of myotubes formation. Other notable proteins, such as superoxide dismutase (MnSOD), a cell protection molecule, and voltage-dependent anion-selective channel protein (VDAC1) involved in the mitochondria-mediated apoptosis, were found to be regulated by the myogenic process. The integration of these approaches represents a helpful tool for studying mitochondrial dynamics, biogenesis, and functionality in comparative surveys on mitochondrial pathogenic or senescent satellite cells.
Oxidative Medicine and Cellular Longevity | 2015
Elena Barbieri; Deborah Agostini; Emanuela Polidori; Lucia Potenza; Michele Guescini; Francesco Lucertini; Giosuè Annibalini; Laura Stocchi; Mauro De Santi; Vilberto Stocchi
Decline in human muscle mass and strength (sarcopenia) is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.
Bioelectromagnetics | 2010
Lucia Potenza; Chiara Martinelli; Emanuela Polidori; Sabrina Zeppa; Cinzia Calcabrini; Laura Stocchi; Piero Sestili; Vilberto Stocchi
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF-exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty-four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis.
Amino Acids | 2016
Piero Sestili; Patrizia Ambrogini; Elena Barbieri; Stefano Sartini; Carmela Fimognari; Cinzia Calcabrini; Anna Rita Diaz; Michele Guescini; Emanuela Polidori; Francesca Luchetti; Barbara Canonico; Davide Lattanzi; Stefano Papa; Vilberto Stocchi
Abstract A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.
Bioelectromagnetics | 2012
Emanuela Polidori; Sabrina Zeppa; Lucia Potenza; Chiara Martinelli; Evelin Colombo; Lucia Casadei; Deborah Agostini; Piero Sestili; Vilberto Stocchi
In a previous investigation we reported that exposure to a moderate (300 mT) static magnetic field (SMF) causes transient DNA damage and promotes mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs). To better understand the response of HUVECs to the 300 mT SMF, a high-quality subtracted cDNA library representative of genes induced in cells after 4 h of static magnetic exposure was constructed. The global gene expression profile showed that several genes were induced after the SMF exposure. The characterized clones are involved in cell metabolism, energy, cell growth/division, transcription, protein synthesis, destination and storage, membrane injury, DNA damage/repair, and oxidative stress response. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed at 4 and 24 h on four selected genes. Their expression profiles suggest that HUVECs response to SMF exposure is transient. Furthermore, compared to control cells, an up-regulation of several genes involved in cell growth and division was observed. This up-regulation is likely to be the cause of the slight, but significant, increase in cell proliferation at 12 h post-treatment. These results provide additional support to the notion that SMFs may be harmless to human health, and could support the rationale for their possible use in medical treatments.
Biotechnology Letters | 2000
Sabrina Zeppa; Michele Guescini; Lucia Potenza; Deborah Agostini; Emanuela Polidori; Vilberto Stocchi
The mRNA differential display technique was used to compare mRNA populations from fruit body and mycelium of a white truffle species in the attempt to identify and clone differentially expressed genes. The differential expression of five out of 30 amplicons was confirmed. One fragment (Tbm 56) corresponded to a part of the ribosomal genes. Three cDNA fragments (Tbf 12, Tbf 20, Tbf 21) were expressed only in the fructification phase, while the other cDNA (Tbf 55) was expressed strongly in fruit body and also detectable in the mycelium. These clones correspond to part of the single-copy genes in the Tuber borchii Vittad. genome.
Journal of Biosciences | 2011
Lucia Potenza; Cinzia Calcabrini; Roberta De Bellis; Umberto Mancini; Emanuela Polidori; Sabrina Zeppa; Rossana Alloni; Luigi Cucchiarini; Marina Dachà
Surgical resection at any location in the body leads to stress response with cellular and subcellular change, leading to tissue damage. The intestine is extremely sensitive to surgical stress with consequent postoperative complications. It has been suggested that the increase of reactive oxygen species as subcellular changes plays an important role in this process. This article focuses on the effect of surgical stress on nuclear and mitochondrial DNA from healthy sections of colon and rectum of patients with colorectal cancer. Mitochondrial DNA copy number, mitochondrial common deletion and nuclear and mitochondrial 8-oxo-2′-deoxyguanosine content were measured. Both the colon and rectal tissue were significantly damaged either at the nuclear or mitochondrial level. In particular, mitochondrial DNA was more damaged in rectum than in colon. The present investigation found an association between surgical stress and nuclear and mitochondrial DNA damage, suggesting that surgery may generate an increase in free radicals, which trigger a cascade of molecular changes, including alterations in DNA.
BMC Microbiology | 2008
Michele Menotta; Antonella Amicucci; Giorgio Basili; Emanuela Polidori; Vilberto Stocchi; Francisco Rivero
BackgroundSmall GTPases of the Rho family function as tightly regulated molecular switches that govern important cellular functions in eukaryotes. Several families of regulatory proteins control their activation cycle and subcellular localization. Members of the guanine nucleotide dissociation inhibitor (GDI) family sequester Rho GTPases from the plasma membrane and keep them in an inactive form.ResultsWe report on the characterization the RhoGDI homolog of Tuber borchii Vittad., an ascomycetous ectomycorrhizal fungus. The Tbgdi gene is present in two copies in the T. borchii genome. The predicted amino acid sequence shows high similarity to other known RhoGDIs. Real time PCR analyses revealed an increased expression of Tbgdi during the phase preparative to the symbiosis instauration, in particular after stimulation with root exudates extracts, that correlates with expression of Tbcdc42. In a translocation assay TbRhoGDI was able to solubilize TbCdc42 from membranes. Surprisingly, TbRhoGDI appeared not to interact with S. cerevisiae Cdc42, precluding the use of yeast as a surrogate model for functional studies. To study the role of TbRhoGDI we performed complementation experiments using a RhoGDI null strain of Dictyostelium discoideum, a model organism where the roles of Rho signaling pathways are well established. For comparison, complementation with mammalian RhoGDI1 and LyGDI was also studied in the null strain. Although interacting with Rac1 isoforms, TbRhoGDI was not able to revert the defects of the D. discoideum RhoGDI null strain, but displayed an additional negative effect on the cAMP-stimulated actin polymerization response.ConclusionT. borchii expresses a functional RhoGDI homolog that appears as an important modulator of cytoskeleton reorganization during polarized apical growth that antecedes symbiosis instauration. The specificity of TbRhoGDI actions was underscored by its inability to elicit a growth defect in S. cerevisiae or to compensate the loss of a D. discoideum RhoGDI. Knowledge of the cell signaling at the basis of cytoskeleton reorganization of ectomycorrhizal fungi is essential for improvements in the production of mycorrhized plant seedlings used in timberland extension programs and fruit body production.