Emanuele De Paoli
University of Udine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emanuele De Paoli.
Nature Biotechnology | 2008
Marcelo A German; Manoj Pillay; Dong-Hoon Jeong; Amit Hetawal; Shujun Luo; Prakash Janardhanan; Vimal Kannan; Linda A. Rymarquis; Kan Nobuta; Rana German; Emanuele De Paoli; Cheng Lu; Gary P. Schroth; Blake C. Meyers; Pamela J. Green
MicroRNAs (miRNAs) are important regulatory molecules in most eukaryotes and identification of their target mRNAs is essential for their functional analysis. Whereas conventional methods rely on computational prediction and subsequent experimental validation of target RNAs, we directly sequenced >28,000,000 signatures from the 5′ ends of polyadenylated products of miRNA-mediated mRNA decay, isolated from inflorescence tissue of Arabidopsis thaliana, to discover novel miRNA–target RNA pairs. Within the set of ∼27,000 transcripts included in the 8,000,000 nonredundant signatures, several previously predicted but nonvalidated targets of miRNAs were found. Like validated targets, most showed a single abundant signature at the miRNA cleavage site, particularly in libraries from a mutant deficient in the 5′-to-3′ exonuclease AtXRN4. Although miRNAs in Arabidopsis have been extensively investigated, working in reverse from the cleaved targets resulted in the identification and validation of novel miRNAs. This versatile approach will affect the study of other aspects of RNA processing beyond miRNA–target RNA pairs.
Genetics | 2006
Myriam Heuertz; Emanuele De Paoli; Thomas Källman; Hanna Larsson; Irena Jurman; Michele Morgante; Martin Lascoux; Niclas Gyllenstrand
DNA polymorphism at 22 loci was studied in an average of 47 Norway spruce [Picea abies (L.) Karst.] haplotypes sampled in seven populations representative of the natural range. The overall nucleotide variation was limited, being lower than that observed in most plant species so far studied. Linkage disequilibrium was also restricted and did not extend beyond a few hundred base pairs. All populations, with the exception of the Romanian population, could be divided into two main domains, a Baltico–Nordic and an Alpine one. Mean Tajimas D and Fay and Wus H across loci were both negative, indicating the presence of an excess of both rare and high-frequency-derived variants compared to the expected frequency spectrum in a standard neutral model. Multilocus neutrality tests based on D and H led to the rejection of the standard neutral model and exponential growth in the whole population as well as in the two main domains. On the other hand, in all three cases the data are compatible with a severe bottleneck occurring some hundreds of thousands of years ago. Hence, demographic departures from equilibrium expectations and population structure will have to be accounted for when detecting selection at candidate genes and in association mapping studies, respectively.
The Plant Cell | 2011
Dong-Hoon Jeong; Sunhee Park; Jixian Zhai; Sai Guna Ranjan Gurazada; Emanuele De Paoli; Blake C. Meyers; Pamela J. Green
This massive analysis of rice small RNAs evaluated annotated microRNAs (miRNAs) and identified new miRNAs and miRNAs regulated by environmental stresses. Of particular interest are miRNA family members with distinct sequences and organ-preferential expression; some of these guide differential target cleavage and provide new insight about how an agriculturally significant phenotype may be regulated. Small RNAs have a variety of important roles in plant development, stress responses, and other processes. They exert their influence by guiding mRNA cleavage, translational repression, and chromatin modification. To identify previously unknown rice (Oryza sativa) microRNAs (miRNAs) and those regulated by environmental stress, 62 small RNA libraries were constructed from rice plants and used for deep sequencing with Illumina technology. The libraries represent several tissues from control plants and plants subjected to different environmental stress treatments. More than 94 million genome-matched reads were obtained, resulting in more than 16 million distinct small RNA sequences. This allowed an evaluation of ~400 annotated miRNAs with current criteria and the finding that among these, ~150 had small interfering RNA–like characteristics. Seventy-six new miRNAs were found, and miRNAs regulated in response to water stress, nutrient stress, or temperature stress were identified. Among the new examples of miRNA regulation were members of the same miRNA family that were differentially regulated in different organs and had distinct sequences Some of these distinct family members result in differential target cleavage and provide new insight about how an agriculturally important rice phenotype could be regulated in the panicle. This high-resolution analysis of rice miRNAs should be relevant to plant miRNAs in general, particularly in the Poaceae.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Kan Nobuta; Cheng Lu; Roli Shrivastava; Manoj Pillay; Emanuele De Paoli; Monica Accerbi; Mario Arteaga-Vazquez; Lyudmila Sidorenko; Dong-Hoon Jeong; Yang Yen; Pamela J. Green; Vicki L. Chandler; Blake C. Meyers
Small RNAs from plants are known to be highly complex and abundant, with this complexity proportional to genome size. Most endogenous siRNAs in Arabidopsis are dependent on RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) for their biogenesis. Recent work has demonstrated that the maize MEDIATOR OF PARAMUTATION1 (mop1) gene is a predicted ortholog of RDR2. The mop1 gene is required for establishment of paramutation and maintenance of transcriptional silencing of transposons and transgenes, suggesting the potential involvement of small RNAs. We analyzed small RNAs in wild-type maize and in the isogenic mop1-1 loss-of-function mutant by using Illuminas sequencing-by-synthesis (SBS) technology, which allowed us to characterize the complement of maize small RNAs to considerable depth. Similar to rdr2 in Arabidopsis, in mop1-1, the 24-nucleotide (nt) endogenous heterochromatic short-interfering siRNAs were dramatically reduced, resulting in an enrichment of miRNAs and transacting siRNAs. In contrast to the Arabidopsis rdr2 mutant, the mop1-1 plants retained a highly abundant heterochromatic ≈22-nt class of small RNAs, suggesting a second mechanism for heterochromatic siRNA production. The enrichment of miRNAs and loss of 24-nt heterochromatic siRNAs in mop1-1 should be advantageous for miRNA discovery as the maize genome becomes more fully sequenced.
Nature | 2016
Jeanine L. Olsen; Pierre Rouzé; Bram Verhelst; Yao-Cheng Lin; Till Bayer; Jonas Collén; Emanuela Dattolo; Emanuele De Paoli; Simon M. Dittami; Florian Maumus; Gurvan Michel; Anna R. Kersting; Chiara Lauritano; Rolf Lohaus; Mats Töpel; Thierry Tonon; Kevin Vanneste; Mojgan Amirebrahimi; Janina Brakel; Christoffer Boström; Mansi Chovatia; Jane Grimwood; Jerry Jenkins; Alexander Jueterbock; Amy Mraz; Wytze T. Stam; Hope Tice; Erich Bornberg-Bauer; Pamela J. Green; Gareth A. Pearson
Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
Nature Communications | 2014
Ricardo A. Chávez Montes; de Fátima Flor Rosas-Cárdenas; Emanuele De Paoli; Monica Accerbi; Linda A. Rymarquis; Gayathri Mahalingam; Nayelli Marsch-Martínez; Blake C. Meyers; Pamela J. Green; Stefan de Folter
Small RNAs are pivotal regulators of gene expression that guide transcriptional and post-transcriptional silencing mechanisms in eukaryotes, including plants. Here we report a comprehensive atlas of sRNA and miRNA from 3 species of algae and 31 representative species across vascular plants, including non-model plants. We sequence and quantify sRNAs from 99 different tissues or treatments across species, resulting in a data set of over 132 million distinct sequences. Using miRBase mature sequences as a reference, we identify the miRNA sequences present in these libraries. We apply diverse profiling methods to examine critical sRNA and miRNA features, such as size distribution, tissue-specific regulation and sequence conservation between species, as well as to predict putative new miRNA sequences. We also develop database resources, computational analysis tools and a dedicated website, http://smallrna.udel.edu/. This study provides new insights on plant sRNAs and miRNAs, and a foundation for future studies.
Genome Biology | 2010
Kankshita Swaminathan; Magdy S. Alabady; Kranthi Varala; Emanuele De Paoli; Isaac Ho; Dan S. Rokhsar; Aru K. Arumuganathan; Ray Ming; Pamela J. Green; Blake C. Meyers; Stephen P. Moose; Matthew E. Hudson
BackgroundMiscanthus × giganteus (Mxg) is a perennial grass that produces superior biomass yields in temperate environments. The essentially uncharacterized triploid genome (3n = 57, x = 19) of Mxg is likely critical for the rapid growth of this vegetatively propagated interspecific hybrid.ResultsA survey of the complex Mxg genome was conducted using 454 pyrosequencing of genomic DNA and Illumina sequencing-by-synthesis of small RNA. We found that the coding fraction of the Mxg genome has a high level of sequence identity to that of other grasses. Highly repetitive sequences representing the great majority of the Mxg genome were predicted using non-cognate assembly for de novo repeat detection. Twelve abundant families of repeat were observed, with those related to either transposons or centromeric repeats likely to comprise over 95% of the genome. Comparisons of abundant repeat sequences to a small RNA survey of three Mxg organs (leaf, rhizome, inflorescence) revealed that the majority of observed 24-nucleotide small RNAs are derived from these repetitive sequences. We show that high-copy-number repeats match more of the small RNA, even when the amount of the repeat sequence in the genome is accounted for.ConclusionsWe show that major repeats are present within the triploid Mxg genome and are actively producing small RNAs. We also confirm the hypothesized origins of Mxg, and suggest that while the repeat content of Mxg differs from sorghum, the sorghum genome is likely to be of utility in the assembly of a gene-space sequence of Mxg.
RNA | 2009
Emanuele De Paoli; Ana Elena Dorantes-Acosta; Jixian Zhai; Monica Accerbi; Dong-Hoon Jeong; Sunhee Park; Blake C. Meyers; Richard A. Jorgensen; Pamela J. Green
Cosuppression is a classical form of eukaryotic post-transcriptional gene silencing. It was first reported in transgenic petunia, where a sense transgene meant to overexpress the host Chalcone Synthase-A (CHS-A) gene caused the degradation of the homologous transcripts and the loss of flower pigmentation. In this work, we used deep sequencing technology to characterize in detail the small RNA population generated from the CHS-A sequence in cosuppressed transgenic petunia. Unexpectedly, two distinct small interfering RNAs (siRNAs) were found to vastly predominate. Our demonstration that they guide prominent cleavage events in CHS-A mRNA provides compelling and previously lacking evidence of a causative association between induction of individual siRNAs and an example of cosuppression. The preferential accumulation of these siRNAs provides new insights about sense cosuppression that may apply to other natural and engineered RNA silencing events.
PLOS Genetics | 2009
Fusheng Wei; Joshua C. Stein; Chengzhi Liang; Jianwei Zhang; Robert S. Fulton; Regina S. Baucom; Emanuele De Paoli; Shiguo Zhou; Lixing Yang; Yujun Han; Shiran Pasternak; Apurva Narechania; Lifang Zhang; Cheng-Ting Yeh; Kai Ying; Dawn Holligan Nagel; Kristi Collura; David Kudrna; Jennifer Currie; Jinke Lin; Hye Ran Kim; Angelina Angelova; Gabriel Scara; Marina Wissotski; Wolfgang Golser; Laura Courtney; Scott S. Kruchowski; Tina Graves; Susan Rock; Stephanie Adams
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.
Methods of Molecular Biology | 2010
Monica Accerbi; Skye A. Schmidt; Emanuele De Paoli; Sunhee Park; Dong-Hoon Jeong; Pamela J. Green
For the experimental analysis of miRNAs and other small RNAs in the 20-25 nucleotide (nt) size range, the first and most important step is the isolation of high-quality total RNA. Because RNA degradation products can mask or dilute the presence of true miRNAs, it is important when choosing a method that it efficiently extracts RNA from tissues in a manner that prevents degradation of RNA of both high and low molecular weight. In addition, the presence of polyphenols, polysaccharides, and secondary metabolites may render nucleic acids insoluble, and hinder the recovery of the miRNAs. Finally, and most importantly, the method chosen must be capable of retaining the small RNA component. In this chapter, we will present a set of total RNA isolation methods that can be used to maximize the recovery of high-quality RNA to be used in miRNA analysis for a large number of plant species and tissue types.