Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuele Pedersoli is active.

Publication


Featured researches published by Emanuele Pedersoli.


Nature | 2012

Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight

N. D. Loh; Christina Y. Hampton; Andrew V. Martin; Dmitri Starodub; Raymond G. Sierra; A. Barty; Andrew Aquila; Joachim Schulz; Lukas Lomb; Jan Steinbrener; Robert L. Shoeman; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; A. Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; G. Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; M. M. Hunter; Lars Gumprecht; Nicola Coppola

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles’ native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.


Nature Communications | 2013

Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser

E. Allaria; Filippo Bencivenga; Roberto Borghes; Flavio Capotondi; D. Castronovo; P. Charalambous; Paolo Cinquegrana; M.B. Danailov; G. De Ninno; Alexander Demidovich; S. Di Mitri; B. Diviacco; D. Fausti; William M. Fawley; Eugenio Ferrari; L. Froehlich; D. Gauthier; Alessandro Gessini; L. Giannessi; R. Ivanov; M. Kiskinova; Gabor Kurdi; B. Mahieu; N. Mahne; I. Nikolov; C. Masciovecchio; Emanuele Pedersoli; G. Penco; Lorenzo Raimondi; C. Serpico

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.


Nature | 2015

Four-wave mixing experiments with extreme ultraviolet transient gratings

F. Bencivenga; R. Cucini; F. Capotondi; A. Battistoni; R. Mincigrucci; E. Giangrisostomi; A. Gessini; M. Manfredda; I. P. Nikolov; Emanuele Pedersoli; E. Principi; C. Svetina; P. Parisse; F. Casolari; M. B. Danailov; M. Kiskinova; C. Masciovecchio

Four-wave mixing (FWM) processes, based on third-order nonlinear light–matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths—that is, the extreme ultraviolet and soft-X-ray ranges—would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.


Optics Express | 2014

Towards jitter-free pump-probe measurements at seeded free electron laser facilities.

M.B. Danailov; Filippo Bencivenga; Flavio Capotondi; Francesco Casolari; Paolo Cinquegrana; Alexander Demidovich; Erika Giangrisostomi; M. Kiskinova; Gabor Kurdi; Michele Manfredda; C. Masciovecchio; R. Mincigrucci; I. Nikolov; Emanuele Pedersoli; Emiliano Principi; P. Sigalotti

X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level.


Optics Express | 2012

Noise-robust coherent diffractive imaging with a single diffraction pattern

Andrew V. Martin; Fenglin Wang; N. D. Loh; Tomas Ekeberg; Filipe R. N. C. Maia; Max F. Hantke; G. van der Schot; Christina Y. Hampton; Raymond G. Sierra; Andy Aquila; Sasa Bajt; Miriam Barthelmess; Christoph Bostedt; John D. Bozek; Nicola Coppola; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; M. Frank; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; G. Hauser; Helmut Hirsemann; Peter Holl; Stephan Kassemeyer; Nils Kimmel; Mengning Liang

The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source.


Optics Express | 2011

Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering

Chun Hong Yoon; Peter Schwander; Chantal Abergel; Inger Andersson; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; A. Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Jean-Michel Claverie; Nicola Coppola; Daniel P. DePonte; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton; Andreas Hartmann; Elisabeth Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann

Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.


Nature Communications | 2016

Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

Eugenio Ferrari; C. Spezzani; Franck Fortuna; Renaud Delaunay; F. Vidal; I. Nikolov; Paolo Cinquegrana; B. Diviacco; D. Gauthier; G. Penco; Primož Rebernik Ribič; Eléonore Roussel; Marco Trovò; J.-B. Moussy; Tommaso Pincelli; Lounès Lounis; Michele Manfredda; Emanuele Pedersoli; Flavio Capotondi; Cristian Svetina; N. Mahne; Marco Zangrando; Lorenzo Raimondi; Alexander Demidovich; L. Giannessi; Giovanni De Ninno; M.B. Danailov; E. Allaria; Maurizio Sacchi

The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.


Review of Scientific Instruments | 2011

Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser.

Emanuele Pedersoli; Flavio Capotondi; Daniele Cocco; Marco Zangrando; Burkhard Kaulich; R.H. Menk; Andrea Locatelli; Tevfik Onur Menteş; Carlo Spezzani; Gilio Sandrin; Daniel M. Bacescu; M. Kiskinova; Sasa Bajt; Miriam Barthelmess; Anton Barty; Joachim Schulz; Lars Gumprecht; Henry N. Chapman; A. J. Nelson; Matthias Frank; Michael J. Pivovaroff; Bruce W. Woods; Michael J. Bogan; Janos Hajdu

We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.


Optics Express | 2012

Femtosecond dark-field imaging with an X-ray free electron laser

Andrew V. Martin; N. D. Loh; Christina Y. Hampton; Raymond G. Sierra; Fenglin Wang; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Christoph Bostedt; John D. Bozek; Nicola Coppola; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann; Peter Holl; Stephan Kassemeyer; Nils Kimmel; Mengning Liang; Lukas Lomb; Filipe R. N. C. Maia; Stefano Marchesini; Karol Nass

The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.


Optics Express | 2013

Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers

Hyung Joo Park; N. Duane Loh; Raymond G. Sierra; Christina Y. Hampton; Dmitri Starodub; Andrew V. Martin; Anton Barty; Andrew Aquila; Joachim Schulz; Jan Steinbrener; Robert L. Shoeman; Lukas Lomb; Stephan Kassemeyer; Christoph Bostedt; John D. Bozek; Sascha W. Epp; Benjamin Erk; Robert Hartmann; Daniel Rolles; Artem Rudenko; Benedikt Rudek; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Guenter Hauser; Peter Holl; Emanuele Pedersoli; Mengning Liang; Mark S. Hunter; Lars Gumprecht

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

Collaboration


Dive into the Emanuele Pedersoli's collaboration.

Top Co-Authors

Avatar

Flavio Capotondi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

M. Kiskinova

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Raimondi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Michele Manfredda

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Filippo Bencivenga

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

N. Mahne

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Marco Zangrando

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

M.B. Danailov

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristian Svetina

Elettra Sincrotrone Trieste

View shared research outputs
Researchain Logo
Decentralizing Knowledge