Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuele Perinati is active.

Publication


Featured researches published by Emanuele Perinati.


Proceedings of SPIE | 2010

eROSITA on SRG

Peter Predehl; Robert Andritschke; W. Becker; Walter Bornemann; H. Bräuninger; H. Brunner; Thomas Boller; Vadim Burwitz; Wolfgang Burkert; Nicolas Clerc; E. Churazov; Diogo Coutinho; Konrad Dennerl; Josef Eder; Valentin Emberger; Tanja Eraerds; Michael J. Freyberg; Peter Friedrich; Maria Fürmetz; A. Georgakakis; Christoph Grossberger; F. Haberl; O. Hälker; Gisela D. Hartner; G. Hasinger; Johannes Hoelzl; Heinrich Huber; Andreas von Kienlin; Walter Kink; Ingo Kreykenbohm

eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian/German Spektrum-Roentgen-Gamma (SRG) mission which is now officially scheduled for launch on March 26, 2016. eROSITA will perform a deep survey of the entire X-ray sky. In the soft band (0.5-2 keV), it will be about 30 times more sensitive than ROSAT, while in the hard band (2-8 keV) it will provide the first ever true imaging survey of the sky. The design driving science is the detection of large samples of galaxy clusters to redshifts z < 1 in order to study the large scale structure in the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGN, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars and diffuse emission within the Galaxy. eROSITA is currently (June 2014) in its flight model and calibration phase. All seven flight mirror modules (+ 1 spare) have been delivered and measured in X-rays. The first camera including the complete electronics has been extensively tested (vacuum + X-rays). A pre-test of the final end-toend test has been performed already. So far, all subsystems and components are well within their expected performances.


Proceedings of SPIE | 2010

The x-ray microcalorimeter spectrometer onboard of IXO

J. W. den Herder; R. L. Kelley; K. Mitsuda; Luigi Piro; Simon R. Bandler; P. Bastia; M. Bruin; J. A. Chervenak; L. Colasanti; W. B. Doriese; M. J. DiPirro; Megan E. Eckart; Yuichiro Ezoe; E. Figueroa-Feliciano; L. Ferrari; Ryuichi Fujimoto; F. Gatti; Keith C. Gendreau; L. Gottardi; R. den Hartog; G. C. Hilton; H. Hoevers; K. D. Irwin; Yoshitaka Ishisaki; Ali Kashani; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; C. Macculi; T. Mineo

One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor thermometers. The pixels have metallic X-ray absorbers and are read-out by multiplexed SQUID electronics. The requirements for this instrument are demanding. In the central array (40 x 40 pixels) an energy resolution of < 2.5 eV is required, whereas the energy resolution of the outer array is more relaxed (≈ 10 eV) but the detection elements have to be a factor 16 larger in order to keep the number of read-out channels acceptable for a cryogenic instrument. Due to the large collection area of the IXO optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. In this paper we will summarize the instrument status and performance. We will describe the results of design studies for the focal plane assembly and the cooling systems. Also the system and its required spacecraft resources will be given.


Proceedings of SPIE | 2012

The x-ray microcalorimeter spectrometer onboard Athena

J. W. den Herder; D. Bagnali; Simon R. Bandler; Marco Barbera; X. Barcons; Didier Barret; P. Bastia; M. Bisotti; C. Cara; M. T. Ceballos; Leonardo Corcione; Beatriz Cobo; L. Colasanti; J. de Plaa; M. J. DiPirro; W. B. Doriese; Yuichiro Ezoe; Ryuichi Fujimoto; F. Gatti; L. Gottardi; P. Guttridge; R. den Hartog; I. Hepburn; R. L. Kelley; K. D. Irwin; Yoshitaka Ishisaki; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; Simone Lotti

One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given.


Review of Scientific Instruments | 2008

Experimental evidence of an incomplete thermalization of the energy in an x-ray microcalorimeter with a Ta∕Au absorber

Emanuele Perinati; Marco Barbera; Salvatore Varisco; Eric H. Silver; Jeffrey W. Beeman; C. Pigot

We have conducted an experimental test at our XACT facility using an x-ray microcalorimeter with TaAu absorber and neutron transmutation doped germanium thermal sensor. The test was aimed at measuring the percentage of energy effectively thermalized after absorption of x-ray photons in superconducting tantalum. Moreover, in general, possible formation of long living quasiparticles implies that by using a superconducting absorber, a fraction of the deposited energy could not be thermalized on the useful time scale of the thermal sensor. To investigate this scenario, we exploited an absorber made of gold, where no energy trapping is expected, with a small piece of superconducting tantalum attached on top. We obtained evidence that the thermalization of photons absorbed in tantalum is delayed by energy trapping from quasiparticles. We compare the experimental results with numerical simulations and derive a value for the intrinsic lifetime of quasiparticles.


Proceedings of SPIE | 2012

The cryogenic anticoincidence detector for ATHENA-XMS: preliminary results from the new prototype

C. Macculi; Luigi Piro; L. Colasanti; Simone Lotti; L. Natalucci; D. Bagliani; M. Biasotti; F. Gatti; G. Torrioli; Simone Chiarucci; Marco Barbera; Teresa Mineo; Emanuele Perinati

ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. < 0.02 cts/cm2/s/keV). Our consortium has both developed and tested seveal samples, with increasing area, in order to match the large area of the XMS (64 mm2). Here we show the preliminary results from the last prototype. The results achieved in this work offer a solution to reduce the particle background not only for the presently study mission, but also for any satellite/balloon borne instrument that foresees a TES-based microcalorimeters/bolometers focal plane (from millimeter to x-ray domain).


THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13 | 2009

Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters

L. Colasanti; C. Macculi; Luigi Piro; L. Natalucci; F. Gatti; L. Ferrari; T. Mineo; Emanuele Perinati; G. Torrioli; P. Bastia; Marco Barbera

The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA)[1][2][3], requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%) [1]. A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo‐AntiCoincidence (Cryo‐AC) based on a silicon absorber and read by a TES (Transition‐Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. We present the results of estimations, simulations and preliminary measurement.


Astronomical Telescopes and Instrumentation | 2003

Modeling the energy thermalization of X-ray photons in a microcalorimeter with superconducting absorber

Emanuele Perinati; Marco Barbera; A. Collura; Salvatore Serio; Eric H. Silver; Jeffrey W. Beeman; E. E. Haller; D. Landis; N. Madden

We present a modeling of the response of a microcalorimeter to the absorption of X-ray photons, based on the main microscopical processes responsible for the energy thermalization. In particular, we have modeled a microcalorimeter with superconducting tin absorber (350 micron x 350 micron x 7 micron) and neutron transmutation doped (NTD) germanium thermistor (75 micron x 50 micron x 150 micron). Such a detector, operated at 60 mK, is expected to achieve a spectral resolution as good as 1 eV FWHM in the soft X-ray energy range, based on the known sources of thermal and electronic noise. Nevertheless, the best spectral resolution measured in laboratory experimental tests is of about 5 eV FWHM (at 5.89 keV). We have investigated how the microscopic processes of energy thermalization, involving both quasiparticles and phonons, and the position of absorption of the photons may affect the spectral resolution of the detector.


Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray | 2018

Evaluation of the Athena/WFI instrumental background

Andreas von Kienlin; Tanja Eraerds; Esra Bulbul; Valentine Fioretti; Fabio Gastaldello; Catherine E. Grant; David J. Hall; Andrew D. Holland; Jonathan Keelan; Norbert Meidinger; S. Molendi; Emanuele Perinati

The Wide Field Imager (WFI) is one of two focal plane instruments of the Advanced Telescope for High-Energy Astrophysics (Athena), ESA’s next large X-ray observatory, planned for launch in the early 2030’s. In the aimed orbit, a halo orbit around L2, the second Lagrange point of the Sun-Earth system the radiation environment, mainly consisting of solar and cosmic protons, electrons and He-ions, could affect the science performance. Furthermore as additional contribution the unfocused hard X-ray background is taken into account. It is important to understand and estimate the expected instrumental background and to investigate measures, like design modifications or analysis methods, which could improve the expected background level in order to achieve the challenging scientific requirement of < 5×10−3 cts/cm2/keV/s. For that purpose, the WFI background working group is investigating possible approaches, which will also be subject to technical feasibility studies. Finally an estimate of the WFI instrumental background for a proposed combination of design optimization and background rejection algorithm is given, showing that WFI is compliant with science background requirements.


Proceedings of SPIE | 2014

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

C. Macculi; Luigi Piro; Donatella Cea; L. Colasanti; Simone Lotti; L. Natalucci; F. Gatti; D. Bagliani; M. Biasotti; D. Corsini; G. Pizzigoni; G. Torrioli; Marco Barbera; Teresa Mineo; Emanuele Perinati

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy in the 0.2-12 keV range. Some goals is the detection of faint and diffuse sources as Warm Hot Intergalactic Medium (WHIM) or galaxies outskirts. To reach its challenging scientific aims, it is necessary to shield efficiently the X-IFU instrument against background induced by external particles: the goal is 0.005 cts/cm^2/s/keV. This scientific requirement can be met by using an active Cryogenic AntiCoincidence (CryoAC) detector placed very close to X-IFU (~ 1 mm below). This is shown by our GEANT4 simulation of the expected background at L2 orbit. The CryoAC is a TES based detector as the X-IFU sharing with it thermal and mechanical interfaces, so increasing the Technology Readiness Level (TRL) of the payload. It is a 2x2 array of microcalorimeter detectors made by Silicon absorber (each of about 80 mm^2 and 300 μm thick) and sensed by an Ir TES. This choice shows that it is possible to operate such a detector in the so-called athermal regime which gives a response faster than the X-IFU (< 30 μs), and low energy threshold (above few keV). Our consortium has developed and tested several samples, some of these also featured by the presence of Al-fins to efficiently collect the athermal phonons, and increased x-ray absorber area (up to 1 cm^2). Here the results of deep test related to one of the last sample produced (namely AC-S5), and steps to reach the final detector design will be discussed.


Proceedings of SPIE | 2010

Estimate of the background for the X-Ray Microcalorimeter Spectrometer onboard of IXO

Emanuele Perinati; Teresa Mineo; L. Colasanti; Simone Lotti; C. Macculi; L. Natalucci; Luigi Piro

We present a study of the background for the array of microcalorimeters onboard of the International X-ray Observatory space mission. We investigated through simulations the rates at the focal plane of soft and hard particles in L2 orbit. Assuming the presence of an anticoincidence instrument, we derived an estimate of the residual background. The preliminary results reported in this paper are based on a number of simplifications of the actual picture. Efforts to improve the model are on-going.

Collaboration


Dive into the Emanuele Perinati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric H. Silver

Smithsonian Astrophysical Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge