Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emanuele Zannini is active.

Publication


Featured researches published by Emanuele Zannini.


European Food Research and Technology | 2012

Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts

Anna-Sophie Hager; Anika Wolter; Mariko Czerny; Jürgen Bez; Emanuele Zannini; Elke K. Arendt; Michael Czerny

Bread is a major staple food consumed daily in all parts of the world. A significant part of the human population cannot tolerate gluten, a storage protein found in wheat, rye and barley, and therefore, products made from alternative cereals are required. During this study, the bread-making potential of seven gluten-free flours, wheat and wholemeal wheat flour was compared. Fermentation potential of the different flours was determined, showing that dough development height of gluten-free and wholemeal wheat samples was lower than for wheat and oat flour. Apart from standard bread quality parameters such as loaf-specific volume and physical crumb texture, also water activity and shelf life have been determined. The shelf life of gluten-free breads was reduced compared to wheat bread. Aroma profiles were evaluated by a trained panel. Wheat, oat and wholemeal wheat breads were liked moderately, while the remaining samples had lower liking scores. Crumb grain characteristics were investigated using image analysis, and microstructure was observed by scanning electron microscopy. Overall, only breads produced from oat flour were of similar quality to wheat bread, and the utilization of buckwheat, rice, maize, quinoa, sorghum and teff flours resulted in breads of inferior quality.


International Journal of Food Microbiology | 2011

Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products

Liam A. M. Ryan; Emanuele Zannini; Fabio Dal Bello; Agata Pawlowska; Peter Koehler; Elke K. Arendt

Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate.


Food Microbiology | 2014

Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products

Pedro M. Oliveira; Emanuele Zannini; Elke K. Arendt

Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food markets trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking.


Microbial Cell Factories | 2011

Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread

Elke K. Arendt; Alice V. Moroni; Emanuele Zannini

Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising. Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads. Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food ingredients to enhance the quality of gluten free bread.


Applied Microbiology and Biotechnology | 2016

Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides

Emanuele Zannini; Deborah M. Waters; Aidan Coffey; Elke K. Arendt

Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.


Applied Microbiology and Biotechnology | 2012

Applications of microbial fermentations for production of gluten-free products and perspectives.

Emanuele Zannini; Erica Pontonio; Deborah M. Waters; Elke K. Arendt

A gluten-free (GF) diet is recognised as being the only accepted treatment for celiac disease—a permanent autoimmune enteropathy triggered by the ingestion of gluten-containing cereals. The bakery products available in today’s gluten-free market are characterised by lower palatability than their conventional counterparts and may lead to nutritional deficiencies of vitamins, minerals and fibre. Thus, the production of high-quality gluten-free products has become a very important socioeconomical issue. Microbial fermentation by means of lactic acid bacteria and yeast is one of the most ecological/economical methods of producing and preserving food. In this review, the role of a fermentation process for improving the quality of GF products and for developing a new concept of GF products with nutraceutical and health-promoting characteristics will be examined.


Advances in food and nutrition research | 2012

“Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria

Agata M. Pawlowska; Emanuele Zannini; Aidan Coffey; Elke K. Arendt

Fungal food spoilage plays a pivotal role in the deterioration of food and feed systems and some of them are also able to produce toxic compounds for humans and animals. The mycotoxins produced by fungi can cause serious health hazards, including cancerogenic, immunotoxic, teratogenic, neurotoxic, nephrotoxic and hepatotoxic effects, and Kashin-Beck disease. In addition to this, fungal spoilage/pathogens are causing losses of marketable quality and hygiene of foodstuffs, resulting in major economic problem throughout the world. Nowadays, food spoilage can be prevented using physical and chemical methods, but no efficient strategy has been proposed so far to reduce the microbial growth ensuring public health. Therefore, lactic acid bacteria (LAB) can play an important role as natural preservatives. The protection of food products using LAB is mainly due to the production of antifungal compounds such as carboxylic acids, fatty acids, ethanol, carbon dioxide, hydrogen peroxide, and bacteriocins. In addition to this, LAB can also positively contribute to the flavor, texture, and nutritional value of food products. This review mainly focuses on the use of LAB for food preservation given their extensive industrial application in a wide range of foods and feeds. The attention points out the several industrial patents concerning the use of antifungal LAB as biocontrol agent against spoilage organisms in different fermented foods and feeds.


Annual Review of Food Science and Technology - (new in 2010) | 2012

Functional Replacements for Gluten

Emanuele Zannini; Julie Miller Jones; Stefano Renzetti; Elke K. Arendt

Celiac disease (CD) is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the only therapy able to normalize the clinical and histological manifestation of the disease is a strict and life-long gluten-free (GF) diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. The objective of this paper is to review some basics about CD, its current prevalence, and the recent advances in the preparation of high-quality GF breads using GF flours, starches, hydrocolloids, gums, and novel functional ingredients and technologies.


Critical Reviews in Food Science and Nutrition | 2015

Lactic Acid Bacteria as a Cell Factory for the Delivery of Functional Biomolecules and Ingredients in Cereal-Based Beverages: A Review

Deborah M. Waters; Alexander Mauch; Aidan Coffey; Elke K. Arendt; Emanuele Zannini

In this review, we aim to describe the mechanisms by which LAB can fulfil the novel role of efficient cell factory for the production of functional biomolecules and food ingredients to enhance the quality of cereal-based beverages. LAB fermentation is a safe, economical, and traditional method of food preservation foremost, as well as having the additional benefits of flavor, texture, and nutrition amelioration. Additionally, LAB fermentation in known to render cereal-based foods and beverages safe, in a chemical-free, consumer-friendly manner, from an antinutrient and toxigenic perspective. Huge market opportunities and potential exist for food manufacturers who can provide the ideal functional beverage fulfilling consumer needs. Newly developed fermented cereal-based beverages must address markets globally including, high-nutrition markets (developing countries), lifestyle choice consumers (vegetarian, vegan, low-fat, low-salt, low-calorie), food-related non-communicable disease sufferers (cardiovascular disease, diabetes), and green label consumers (Western countries). To fulfil these recommendations, a suitable LAB starter culture and cereal-based raw materials must be developed. These strains would be suitable for the biopreservation of cereal beverages and, ideally, would be highly antifungal, anti-mycotoxigenic, mycotoxin-binding and proteolytic (neutralize toxic peptides and release flavor-contributing amino acids) with an ability to ferment cereals, whilst synthesizing oligosaccharides, thus presenting a major opportunity for the development of safe cereal-based prebiotic functional beverages to compete with and replace the existing dairy versions.


International Journal of Food Microbiology | 2014

Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads.

Anika Wolter; Anna-Sophie Hager; Emanuele Zannini; Michael Czerny; Elke K. Arendt

Breads based on gluten-free buckwheat, quinoa, sorghum and teff flours were produced with addition of 20% sourdough fermented with exopolysaccharide (EPS) producing Weissella cibaria MG1. Wheat bread was baked as a reference. Dough rheology, bread quality parameters and sensory properties of the sourdough-containing breads were compared to sourdough non-containing control breads of the respective flour. The specific volume remained unaffected by sourdough application. In buckwheat, sorghum, teff and wheat sourdough breads acidification increased crumb porosity compared to control breads. Crumb hardness was significantly reduced in buckwheat (-122%), teff (-29%), quinoa (-21%) and wheat sourdough breads (-122%). The staling rate was significantly reduced in buckwheat, teff and wheat sourdough breads. Water activity of the sourdough containing bread crumb was not influenced by the presence of EPS. Due to the presence of exopolysaccharides (EPS) and influence of acidification, the dough strength, AF, as measured by oscillation tests decreased significantly in sourdough-containing buckwheat, sorghum and wheat dough, but increased in sourdough-containing quinoa and teff dough. Microbial shelf-life was significantly prolonged neither for gluten-free sourdough nor for wheat sourdough breads. Scanning electron microscopy of control and sourdough bread crumbs did not show differences concerning structural starch features. In addition, the aroma of most bread was not improved by sourdough addition.

Collaboration


Dive into the Emanuele Zannini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Axel

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Aidan Coffey

Cork Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anika Wolter

University College Cork

View shared research outputs
Top Co-Authors

Avatar

Brid Brosnan

Cork Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ambrose Furey

Cork Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge